Membangkitkan Data

Skenario

Y: Keputusan menolak/menerima pelamar kerja pada PT A posisi B X1 : Lama Pengalaman kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0: Bekerja, 1: tidak bekerja) X3 : Tingkat pendidikan (0: Lulusan Sekolah Menengah, 1: Lulusan Perguruan Tinggi) X4 : IPK (skala 4)

Membangkitkan Data X1

X1 : Lama Pengalaman kerja sebelumnya (bulan) membangkitkan variabel x1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100.

set.seed(100) ## mengunci data set seed
n <- 100
u <- runif(n)

## 60 = lama pekerja
## 12 = nilai tengah
## 100 = banyak pelamar 
x1 <- round(60*(-(log(1-u)/12)))
x1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

Membangkitkan Data X2

X2 : Status pekerjaan saat ini (0: Bekerja, 1: tidak bekerja)

set.seed(100) ## mengunci data set seed
x2 <- round(runif(n))
x2
##   [1] 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##  [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1

Membangkitkan Data X3

x3 : Tingkat Pendidikan X3 : Tingkat pendidikan (0: Lulusan Sekolah Menengah, 1: Lulusan Perguruan Tinggi)

set.seed(100) ## mengunci data set seed
x3 <- round(runif(n))
x3
##   [1] 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##  [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1

Membangkitkan Data X4

X4 : IPK (skala 4)

set.seed(11)
x4 <- round(rnorm(n,3,0.5),2)
x4
##   [1] 2.70 3.01 2.24 2.32 3.59 2.53 3.66 3.31 2.98 2.50 2.59 2.83 2.23 2.87 2.43
##  [16] 3.01 2.89 3.44 2.70 2.67 2.66 2.99 2.78 3.18 3.04 3.00 2.91 2.62 2.89 2.51
##  [31] 2.45 2.53 3.34 2.21 2.57 3.24 2.91 3.77 2.69 2.83 2.18 3.01 3.45 2.56 3.45
##  [46] 2.83 1.91 3.44 3.36 3.11 3.39 2.89 2.59 3.25 3.08 3.27 2.92 3.22 3.74 3.03
##  [61] 2.58 4.17 2.94 2.02 3.27 3.85 2.60 2.46 2.70 3.38 3.23 2.94 2.62 3.11 3.56
##  [76] 3.08 2.66 3.23 2.47 3.20 2.97 3.16 2.70 2.55 4.13 2.70 2.35 3.25 2.57 2.25
##  [91] 3.60 2.49 3.47 2.73 3.26 2.82 3.66 2.43 3.71 2.70

Membangkitkan Data Y

menentukan Koefesien

b0 <- -10
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7 
b4 <- 1.2
set.seed(2)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapendukung
##   [1]  0.240 -2.888  9.888 -7.216  4.808  3.536 25.592  0.972 10.776 -3.500
##  [11] 13.808 35.096 -0.324  3.944 20.616 17.812 -3.032  1.128  0.240 17.404
##  [21] 10.392 17.788 10.536 21.516  4.148 -2.900 21.192 34.844 10.668  0.012
##  [31]  3.440 41.736  1.008 48.352 17.284 35.588 -3.008 15.224 76.928 -3.104
##  [41] -0.384 31.812 25.340 27.772 14.840  3.896 23.492 35.828 -2.468  0.732
##  [51]  1.068 -3.032 -3.392  0.900 10.896 -2.576 -2.996 -2.636 15.188 -2.864
##  [61]  3.596 15.704 52.728 16.624  4.424  1.620  3.620  3.452 -3.260 18.256
##  [71]  4.376  0.528 10.344 56.432 14.972 14.396 31.392 21.576 27.664 -6.160
##  [81]  4.064 14.492 41.940 66.260 -5.044 10.440 20.520 -2.600  0.084 20.400
##  [91] 39.520 -3.512  1.164  3.776 39.112  0.384 11.592 -3.584 -5.548 20.940
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.5597136493 0.0527499639 0.9999492222 0.0007341961 0.9919019422
##   [6] 0.9716949037 1.0000000000 0.7255179607 0.9999791054 0.0293122308
##  [11] 0.9999989925 1.0000000000 0.4197012277 0.9809975119 0.9999999989
##  [16] 0.9999999816 0.0460009775 0.7554696173 0.5597136493 0.9999999724
##  [21] 0.9999693240 0.9999999812 0.9999734379 0.9999999995 0.9844496560
##  [26] 0.0521535631 0.9999999994 1.0000000000 0.9999767225 0.5029999640
##  [31] 0.9689315158 1.0000000000 0.7326285637 1.0000000000 0.9999999688
##  [36] 1.0000000000 0.0470657656 0.9999997555 1.0000000000 0.0429425601
##  [41] 0.4051625091 1.0000000000 1.0000000000 1.0000000000 0.9999996410
##  [46] 0.9800817580 0.9999999999 1.0000000000 0.0781321687 0.6752440053
##  [51] 0.7442163851 0.0460009775 0.0325464221 0.7109495026 0.9999814681
##  [56] 0.0706990829 0.0476069073 0.0668571527 0.9999997465 0.0539621349
##  [61] 0.9732992517 0.9999998487 1.0000000000 0.9999999397 0.9881557756
##  [66] 0.8347951298 0.9739159249 0.9692907290 0.0369692093 0.9999999882
##  [71] 0.9875806203 0.6290165230 0.9999678157 1.0000000000 0.9999996854
##  [76] 0.9999994404 1.0000000000 0.9999999996 1.0000000000 0.0021078011
##  [81] 0.9831100119 0.9999994916 1.0000000000 1.0000000000 0.0064065959
##  [86] 0.9999707616 0.9999999988 0.0691384203 0.5209876607 0.9999999986
##  [91] 1.0000000000 0.0289727162 0.7620587757 0.9775991322 1.0000000000
##  [96] 0.5948374909 0.9999907604 0.0270143796 0.0038801259 0.9999999992
set.seed(3)
y <- rbinom(n,1,p)
y
##   [1] 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##     y x1 x2 x3   x4
## 1   1  2  0  0 2.70
## 2   0  1  0  0 3.01
## 3   1  4  1  1 2.24
## 4   0  0  0  0 2.32
## 5   1  3  0  0 3.59
## 6   1  3  0  0 2.53
## 7   1  8  1  1 3.66
## 8   1  2  0  0 3.31
## 9   1  4  1  1 2.98
## 10  0  1  0  0 2.50
## 11  1  5  1  1 2.59
## 12  1 11  1  1 2.83
## 13  0  2  0  0 2.23
## 14  1  3  0  0 2.87
## 15  1  7  1  1 2.43
## 16  1  6  1  1 3.01
## 17  0  1  0  0 2.89
## 18  1  2  0  0 3.44
## 19  0  2  0  0 2.70
## 20  1  6  1  1 2.67
## 21  1  4  1  1 2.66
## 22  1  6  1  1 2.99
## 23  1  4  1  1 2.78
## 24  1  7  1  1 3.18
## 25  1  3  0  0 3.04
## 26  0  1  0  0 3.00
## 27  1  7  1  1 2.91
## 28  1 11  1  1 2.62
## 29  1  4  1  1 2.89
## 30  0  2  0  0 2.51
## 31  1  3  0  0 2.45
## 32  1 13  1  1 2.53
## 33  1  2  0  0 3.34
## 34  1 15  1  1 2.21
## 35  1  6  1  1 2.57
## 36  1 11  1  1 3.24
## 37  0  1  0  0 2.91
## 38  1  5  1  1 3.77
## 39  1 23  1  1 2.69
## 40  0  1  0  0 2.83
## 41  0  2  0  0 2.18
## 42  1 10  1  1 3.01
## 43  1  8  1  1 3.45
## 44  1  9  1  1 2.56
## 45  1  5  1  1 3.45
## 46  1  3  0  0 2.83
## 47  1  8  1  1 1.91
## 48  1 11  1  1 3.44
## 49  0  1  0  0 3.36
## 50  1  2  0  0 3.11
## 51  1  2  0  0 3.39
## 52  0  1  0  0 2.89
## 53  0  1  0  0 2.59
## 54  1  2  0  0 3.25
## 55  1  4  1  1 3.08
## 56  0  1  0  0 3.27
## 57  1  1  0  0 2.92
## 58  0  1  0  0 3.22
## 59  1  5  1  1 3.74
## 60  0  1  0  0 3.03
## 61  1  3  0  0 2.58
## 62  1  5  1  1 4.17
## 63  1 16  1  1 2.94
## 64  1  6  1  1 2.02
## 65  1  3  0  0 3.27
## 66  1  2  0  0 3.85
## 67  1  3  0  0 2.60
## 68  1  3  0  0 2.46
## 69  0  1  0  0 2.70
## 70  1  6  1  1 3.38
## 71  1  3  0  0 3.23
## 72  1  2  0  0 2.94
## 73  1  4  1  1 2.62
## 74  1 17  1  1 3.11
## 75  1  5  1  1 3.56
## 76  1  5  1  1 3.08
## 77  1 10  1  1 2.66
## 78  1  7  1  1 3.23
## 79  1  9  1  1 2.47
## 80  0  0  0  0 3.20
## 81  1  3  0  0 2.97
## 82  1  5  1  1 3.16
## 83  1 13  1  1 2.70
## 84  1 20  1  1 2.55
## 85  0  0  0  0 4.13
## 86  1  4  1  1 2.70
## 87  1  7  1  1 2.35
## 88  0  1  0  0 3.25
## 89  0  2  0  0 2.57
## 90  1  7  1  1 2.25
## 91  1 12  1  1 3.60
## 92  0  1  0  0 2.49
## 93  0  2  0  0 3.47
## 94  1  3  0  0 2.73
## 95  1 12  1  1 3.26
## 96  1  2  0  0 2.82
## 97  1  4  1  1 3.66
## 98  0  1  0  0 2.43
## 99  0  0  0  0 3.71
## 100 1  7  1  1 2.70

Analisis Regresi Logistik

modelreglog <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"), data=datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -17.221      5.777  -2.981 0.002875 ** 
## x1             4.107      1.140   3.603 0.000315 ***
## x2            11.607   3780.458   0.003 0.997550    
## x3                NA         NA      NA       NA    
## x4             3.324      1.578   2.107 0.035152 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 114.611  on 99  degrees of freedom
## Residual deviance:  22.764  on 96  degrees of freedom
## AIC: 30.764
## 
## Number of Fisher Scoring iterations: 21