Y : Keputusan menolak/menerima pelamar kerja pada PT A posisi B X1 :Lama pengalaman kerja sebelumnya (bulan) X2 :Status pekerjaan saat ini (0: Bekerja, 1: Tidak bekerja) X3 :Tingkat pendidikan 0: Lulusah Sekolah Menengah, 1: Lulusan Perguruan Tinggi) X4 :IPK (skala 4)
X1 :Lama pengalaman kerja sebelumnya (bulan) Membangkitkan variabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyaknya pelamar adalah 100
set.seed(100)
n <- 100
u <- runif(n)
X1 <- round(60*(-log(1-u)/12))
X1
## [1] 2 1 4 0 3 3 8 2 4 1 5 11 2 3 7 6 1 2 2 6 4 6 4 7 3
## [26] 1 7 11 4 2 3 13 2 15 6 11 1 5 23 1 2 10 8 9 5 3 8 11 1 2
## [51] 2 1 1 2 4 1 1 1 5 1 3 5 16 6 3 2 3 3 1 6 3 2 4 17 5
## [76] 5 10 7 9 0 3 5 13 20 0 4 7 1 2 7 12 1 2 3 12 2 4 1 0 7
X2 :Status pekerjaan saat ini (0: Bekerja, 1: Tidak bekerja)
set.seed(101)
X2 <- round(runif(n))
X2
## [1] 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 0
## [38] 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1
## [75] 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0
X3 :Tingkat pendidikan (0: Lulusah Sekolah Menengah, 1: Lulusan Perguruan Tinggi)
set.seed(102)
X3 <- round(runif(n))
X3
## [1] 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0
## [38] 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0
## [75] 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0
X4 :IPK (skala 4)
set.seed(103)
X4 <- round(rnorm(n,3,0.5),2)
X4
## [1] 2.61 3.03 2.41 2.92 2.07 2.94 3.41 3.60 2.45 2.81 2.53 3.02 3.06 4.29 2.87
## [16] 2.56 3.23 3.06 2.88 3.40 3.46 3.13 2.88 2.26 2.40 3.37 2.75 3.59 3.48 3.07
## [31] 2.49 3.35 3.30 3.22 2.99 2.68 3.17 3.64 1.93 3.13 3.16 3.52 3.07 2.76 3.10
## [46] 2.98 3.54 3.04 2.50 3.24 2.92 2.34 3.47 3.14 3.43 2.77 2.77 3.15 3.87 2.93
## [61] 4.00 3.51 3.27 2.31 2.76 3.23 3.06 2.98 2.53 2.70 2.39 2.78 2.47 3.45 2.97
## [76] 2.49 3.44 3.46 2.52 3.02 3.88 3.76 3.41 3.86 2.31 3.32 2.75 2.31 3.08 3.02
## [91] 3.33 2.64 3.67 2.34 2.75 2.52 2.34 3.86 2.24 2.61
Menentukan Koef
b0 <- -10
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 3.2
set.seed(104)
datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
datapendukung
## [1] 8.052 3.196 14.912 2.544 7.124 9.908 32.112 8.520 15.040 2.992
## [11] 18.796 41.364 9.992 14.728 26.384 22.392 7.036 6.792 8.916 24.580
## [21] 18.272 24.216 15.916 24.932 8.680 4.784 23.300 39.988 15.136 7.324
## [31] 8.468 48.920 7.560 55.504 23.768 37.576 3.644 22.348 79.376 4.016
## [41] 9.812 38.964 28.324 30.332 17.420 10.036 29.328 38.728 2.000 10.068
## [51] 6.344 3.688 7.804 7.548 17.676 2.864 5.564 4.080 23.084 6.076
## [61] 16.500 19.232 56.964 21.592 9.832 10.536 10.292 10.036 4.796 22.840
## [71] 10.848 9.096 15.104 61.040 17.504 15.468 38.708 25.572 32.764 0.164
## [81] 16.116 20.032 49.612 75.552 -2.608 15.124 23.300 3.592 9.556 24.164
## [91] 43.156 2.448 11.944 10.688 40.800 5.564 14.188 5.852 -2.832 22.852
p <- exp(datapendukung)/(1+exp(datapendukung))
p
## [1] 0.99968164 0.96068347 0.99999967 0.92716939 0.99919511 0.99995023
## [7] 1.00000000 0.99980060 0.99999971 0.95221140 0.99999999 1.00000000
## [13] 0.99995424 0.99999960 1.00000000 1.00000000 0.99912113 0.99887854
## [19] 0.99986579 1.00000000 0.99999999 1.00000000 0.99999988 1.00000000
## [25] 0.99983008 0.99170687 1.00000000 1.00000000 0.99999973 0.99934092
## [31] 0.99978996 1.00000000 0.99947940 1.00000000 1.00000000 1.00000000
## [37] 0.97451873 1.00000000 1.00000000 0.98229422 0.99994521 1.00000000
## [43] 1.00000000 1.00000000 0.99999997 0.99995621 1.00000000 1.00000000
## [49] 0.88079708 0.99995759 0.99824582 0.97558882 0.99959207 0.99947311
## [55] 0.99999998 0.94603787 0.99618123 0.98337364 1.00000000 0.99770792
## [61] 0.99999993 1.00000000 1.00000000 1.00000000 0.99994630 0.99997344
## [67] 0.99996610 0.99995621 0.99180498 1.00000000 0.99998056 0.99988790
## [73] 0.99999972 1.00000000 0.99999997 0.99999981 1.00000000 1.00000000
## [79] 1.00000000 0.54090835 0.99999990 1.00000000 1.00000000 1.00000000
## [85] 0.06862533 0.99999973 1.00000000 0.97319510 0.99992923 1.00000000
## [91] 1.00000000 0.92041507 0.99999350 0.99997718 1.00000000 0.99618123
## [97] 0.99999931 0.99713409 0.05561925 1.00000000
set.seed(105)
Y <- rbinom(n,1,p)
Y
## [1] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [75] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
datagab <- data.frame(Y,X1,X2,X3,X4)
datagab
## Y X1 X2 X3 X4
## 1 1 2 0 1 2.61
## 2 0 1 0 0 3.03
## 3 1 4 1 1 2.41
## 4 1 0 1 1 2.92
## 5 1 3 0 0 2.07
## 6 1 3 0 0 2.94
## 7 1 8 1 1 3.41
## 8 1 2 0 0 3.60
## 9 1 4 1 1 2.45
## 10 1 1 1 0 2.81
## 11 1 5 1 1 2.53
## 12 1 11 1 1 3.02
## 13 1 2 1 1 3.06
## 14 1 3 1 0 4.29
## 15 1 7 0 1 2.87
## 16 1 6 1 1 2.56
## 17 1 1 1 1 3.23
## 18 1 2 0 0 3.06
## 19 1 2 0 1 2.88
## 20 1 6 0 1 3.40
## 21 1 4 1 1 3.46
## 22 1 6 1 1 3.13
## 23 1 4 0 1 2.88
## 24 1 7 1 1 2.26
## 25 1 3 1 0 2.40
## 26 1 1 1 0 3.37
## 27 1 7 0 0 2.75
## 28 1 11 0 0 3.59
## 29 1 4 0 0 3.48
## 30 1 2 1 0 3.07
## 31 1 3 0 0 2.49
## 32 1 13 0 1 3.35
## 33 1 2 0 0 3.30
## 34 1 15 0 1 3.22
## 35 1 6 1 1 2.99
## 36 1 11 1 0 2.68
## 37 1 1 0 0 3.17
## 38 1 5 1 1 3.64
## 39 1 23 0 1 1.93
## 40 1 1 1 0 3.13
## 41 1 2 0 1 3.16
## 42 1 10 0 1 3.52
## 43 1 8 1 0 3.07
## 44 1 9 0 0 2.76
## 45 1 5 0 0 3.10
## 46 1 3 0 0 2.98
## 47 1 8 0 0 3.54
## 48 1 11 1 0 3.04
## 49 1 1 1 0 2.50
## 50 1 2 0 1 3.24
## 51 1 2 0 0 2.92
## 52 1 1 0 1 2.34
## 53 1 1 1 1 3.47
## 54 1 2 1 0 3.14
## 55 1 4 0 1 3.43
## 56 1 1 1 0 2.77
## 57 1 1 1 1 2.77
## 58 1 1 1 0 3.15
## 59 1 5 1 1 3.87
## 60 1 1 1 1 2.93
## 61 1 3 1 1 4.00
## 62 1 5 1 0 3.51
## 63 1 16 1 0 3.27
## 64 1 6 1 1 2.31
## 65 1 3 1 0 2.76
## 66 1 2 1 1 3.23
## 67 1 3 0 0 3.06
## 68 1 3 0 0 2.98
## 69 1 1 1 1 2.53
## 70 1 6 1 1 2.70
## 71 1 3 0 1 2.39
## 72 1 2 1 1 2.78
## 73 1 4 1 1 2.47
## 74 1 17 1 0 3.45
## 75 1 5 1 0 2.97
## 76 1 5 0 0 2.49
## 77 1 10 0 1 3.44
## 78 1 7 0 0 3.46
## 79 1 9 1 1 2.52
## 80 1 0 1 0 3.02
## 81 1 3 1 1 3.88
## 82 1 5 1 0 3.76
## 83 1 13 1 1 3.41
## 84 1 20 1 1 3.86
## 85 0 0 0 0 2.31
## 86 1 4 1 0 3.32
## 87 1 7 0 0 2.75
## 88 1 1 0 1 2.31
## 89 1 2 0 1 3.08
## 90 1 7 0 0 3.02
## 91 1 12 1 0 3.33
## 92 1 1 1 0 2.64
## 93 1 2 1 1 3.67
## 94 1 3 0 1 2.34
## 95 1 12 0 0 2.75
## 96 1 2 1 0 2.52
## 97 1 4 0 1 2.34
## 98 1 1 0 0 3.86
## 99 0 0 0 0 2.24
## 100 1 7 0 0 2.61
modelreglog <- glm(Y~X1+X2+X3+X4,family = binomial(link = "logit"),data=datagab)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
##
## Call:
## glm(formula = Y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"),
## data = datagab)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -874.4 96281.5 -0.009 0.993
## X1 132.6 14238.0 0.009 0.993
## X2 173.2 31130.0 0.006 0.996
## X3 210.6 35681.2 0.006 0.995
## X4 239.2 26561.0 0.009 0.993
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2.6948e+01 on 99 degrees of freedom
## Residual deviance: 2.2924e-07 on 95 degrees of freedom
## AIC: 10
##
## Number of Fisher Scoring iterations: 25