Parte 1 - Objetivo

Apresentar o cronograma da disciplina

  • 27/03/2024 Presencial 4 horas Apresentação da Disciplina, Apresentação do R, do Rstúdio, ferramentas de abertura de planilhas e importação de dados.
  • 03/04/2024 Presencial 4 horas Linguagem R, operadores lógicos, loopings, vetores, matrizes, e funçõs
  • 10/04/2024 Presencial 4 horas Econometria Básica
  • 17/04/2024 Assíncrona 4 horas Gauss-Markov
  • 24/04/2024 Presencial 4 horas Estimador de OLS
  • 01/05/2024 Presencial 4 horas Prova 1
  • 08/05/2024 Assíncrona 4 horas Estimador de MQO
  • 15/05/2024 Presencial 4 horas Estamoador de GMM
  • 22/05/2024 Assíncrona 4 horas Dados em Painel
  • 29/05/2024 Presencial 4 horas Aplicações
  • 05/06/2024 Assíncrona 4 horas Revisão
  • 12/06/2024 Presencial 4 horas Prova 2
  • 19/06/2024 Assíncrona 4 horas Vista de Prova
  • 26/06/2024 Presencial 4 horas VS

Introdução

Serão apresentados aspectos básicos da econometria, bem como, aplicação em R, e utilização da ferramenta a realidade financeira e atuarial. Como cálculo do VaR, TVaR, regressões, métodos de estimação, interpretação dos resultados

Figure Caption.

Figure 1: Figure Caption.

You should use Pandoc’s markdown but you also can use \(\LaTeX\) commands:

  • Java or \(\proglang{Java}\)
  • plyr, plyr or \(\pkg{plyr}\)
  • print("abc") or \(\code{print("abc")}\)

Econometria Financeira

Outras ferramentas financeiras como os gráficos de BoxBox, é uma empresa que realiza o compartilhamento de arquivos online e fornece o serviço de gerenciamento de conteúdo em nuvem pessoal para empresas. Fundada em 2005 e sediada em Los Altos. Box oferece às empresas uma plataforma de compartilhamento de conteúdo, seguro e escalável. e de DROPBOXDropbox é um serviço para armazenamento e partilha de arquivos. É baseado no conceito de “computação em nuvem”. Ele pertence ao Dropbox Inc., sediada em San Francisco, Califórnia, EUA. A empresa desenvolvedora do programa disponibiliza centrais de computadores que armazenam os arquivos de seus clientes. onde podemos tecer algumas análise com base na demanda por serviços, expectativa de lucro futuro e crescimento da empresa.

Figure Caption.

Figure 2: Figure Caption.

Figure Caption.

Figure 3: Figure Caption.

Dados resumidos

Podemos resumir os dados coletados a partir da seguinte análise:

# A tibble: 1 × 3
  media risco crescimento
  <dbl> <dbl>       <dbl>
1  24.1  12.1       0.642
# A tibble: 1 × 3
  media risco crescimento
  <dbl> <dbl>       <dbl>
1  23.9  7.22       0.352

Análise Econométrica

R> # Merge
R> merged <- merge(boxx, dropbox, by=c("date"))
R> head(merged)
        date symbol.x open.x high.x  low.x close.x volume.x adjusted.x symbol.y
1 2020-01-02      BOX  16.95  17.24 16.860   17.24  1470200      17.24      DBX
2 2020-01-03      BOX  16.98  17.09 16.860   16.94   731600      16.94      DBX
3 2020-01-06      BOX  16.72  17.38 16.690   17.32  1183900      17.32      DBX
4 2020-01-07      BOX  17.38  17.38 16.865   16.97  1534900      16.97      DBX
5 2020-01-08      BOX  16.95  17.20 16.760   16.86  2803300      16.86      DBX
6 2020-01-09      BOX  16.93  17.03 16.720   16.98  1291200      16.98      DBX
  open.y high.y  low.y close.y volume.y adjusted.y
1  18.06 18.460 17.975   18.09  4186500      18.09
2  17.98 18.200 17.820   18.00  2731500      18.00
3  18.07 18.610 17.980   18.53  4524300      18.53
4  18.62 18.770 18.190   18.53  2902200      18.53
5  18.43 18.630 18.220   18.46  2994300      18.46
6  18.43 18.635 18.220   18.37  3507000      18.37
R> # Subset
R> df = subset(merged, select=c("date","adjusted.x","adjusted.y"))
R> 
R> # Rename
R> names(df)[names(df) == "adjusted.x"] <- "box"
R> names(df)[names(df) == "adjusted.y"] <- "dropbox"
R> 
R> 
R> #attach(df)
R> 
R> reg <- lm(box~dropbox, data=df)
R> summary(reg)

Call:
lm(formula = box ~ dropbox, data = df)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.1366  -4.0088  -0.8818   4.0318  11.2483 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  11.5340     0.8801   13.11   <2e-16 ***
dropbox       0.5254     0.0363   14.47   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.501 on 1063 degrees of freedom
Multiple R-squared:  0.1646,    Adjusted R-squared:  0.1638 
F-statistic: 209.5 on 1 and 1063 DF,  p-value: < 2.2e-16
R> library(lmtest)
Warning: package 'lmtest' was built under R version 4.3.1
R> grangertest(box ~ dropbox, order = 3, data=df)
Granger causality test

Model 1: box ~ Lags(box, 1:3) + Lags(dropbox, 1:3)
Model 2: box ~ Lags(box, 1:3)
  Res.Df Df      F Pr(>F)
1   1055                 
2   1058 -3 0.1301 0.9422
R> dwtest(reg)

    Durbin-Watson test

data:  reg
DW = 0.012547, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0

#Análise dos resíduos

R> residuals = reg$residuals
R> plot(residuals, type='l')

#Subconjuntos

R> sub_box <- subset(df, select=c("date","box"))
R> sub_dropbox <- subset(df, select=c("date","dropbox"))
R> 
R> d_box = diff(as.numeric(unlist(sub_box["box"])))
R> d_dbox = diff(as.numeric(unlist(sub_dropbox["dropbox"])))
R> 
R> lagged_reg <- lm(d_box~d_dbox)
R> summary(lagged_reg)

Call:
lm(formula = d_box ~ d_dbox)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.4035 -0.2451 -0.0028  0.2219  2.8881 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.00761    0.01543   0.493    0.622    
d_dbox       0.46592    0.02647  17.602   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5032 on 1062 degrees of freedom
Multiple R-squared:  0.2259,    Adjusted R-squared:  0.2251 
F-statistic: 309.8 on 1 and 1062 DF,  p-value: < 2.2e-16
R> lagged_reg_res = lagged_reg$residuals
R> plot(lagged_reg_res, type='l')

R> acf_residual_reg = acf(residuals)

R> acf_lag_residual_reg = acf(lagged_reg_res)

R> acf_residual_reg

Autocorrelations of series 'residuals', by lag

    0     1     2     3     4     5     6     7     8     9    10    11    12 
1.000 0.993 0.986 0.978 0.971 0.964 0.957 0.950 0.943 0.935 0.928 0.920 0.913 
   13    14    15    16    17    18    19    20    21    22    23    24    25 
0.906 0.899 0.892 0.885 0.878 0.871 0.863 0.857 0.851 0.846 0.841 0.836 0.831 
   26    27    28    29    30 
0.827 0.824 0.820 0.817 0.813 
R> acf_lag_residual_reg

Autocorrelations of series 'lagged_reg_res', by lag

     0      1      2      3      4      5      6      7      8      9     10 
 1.000  0.018  0.010 -0.003  0.008 -0.037 -0.036  0.033  0.019 -0.028  0.027 
    11     12     13     14     15     16     17     18     19     20     21 
-0.055  0.030 -0.042  0.040  0.005 -0.004  0.017  0.009 -0.065 -0.002 -0.050 
    22     23     24     25     26     27     28     29     30 
-0.027 -0.020 -0.040 -0.047 -0.023  0.024 -0.007  0.000  0.017 

Cointegração

R> library(egcm)
Warning: package 'egcm' was built under R version 4.3.3
R> library(tseries)
Warning: package 'tseries' was built under R version 4.3.3
R> egcm(as.numeric(unlist(sub_box["box"])), as.numeric(unlist(sub_dropbox["dropbox"])))
Y[i] =   0.3133 X[i] +  16.3878 + R[i], R[i] =   0.9944 R[i-1] + eps[i], eps ~ N(0,  0.5211^2)
        (0.0216)        (0.5931)                (0.0046)

R[1065] = -0.8046 (t = -0.232)

WARNING: X and Y do not appear to be cointegrated.
R> egcm(d_box, d_dbox)
Warning in pp.test(X): p-value smaller than printed p-value
Warning in pp.test(X): p-value smaller than printed p-value
Y[i] =   0.4848 X[i] +   0.0009 + R[i], R[i] =  -0.0156 R[i-1] + eps[i], eps ~ N(0,  0.5132^2)
        (0.0275)        (0.2571)                (0.0307)

R[1064] = 0.1451 (t = 0.283)

WARNING: X does not seem to be integrated. Y does not seem to be integrated. X and Y do not appear to be cointegrated.
R> plot(egcm(as.numeric(unlist(sub_box["box"])), as.numeric(unlist(sub_dropbox["dropbox"]))))
Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
of ggplot2 3.3.4.
ℹ The deprecated feature was likely used in the egcm package.
  Please report the issue to the authors.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.

R> plot(egcm(d_box, d_dbox))
Warning in pp.test(X): p-value smaller than printed p-value

Warning in pp.test(X): p-value smaller than printed p-value

References