Membangkitkan data

Skenario

Y : Keputusan menolak/menerima pelamar kerja pada PT A posisi B X1 : Lama pengalaman kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0: Bekerja, 1: Tidak bekerja) X3 : Tingkat pendidikan (0: Lulusan Sekolah Menengah, 1: Lulusan Perguruan Tinggi) X4 : IPK (skala 4)

Membangkitkan data X1

X1 : Lama pengalaman kerja membangkitkan variabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(1)
n <- 100
u <- 100 
u <- runif(n)
x1 <- round(60*(-(log(1-u)/12)))
x1
##   [1]  2  2  4 12  1 11 14  5  5  0  1  1  6  2  7  3  6 24  2  8 14  1  5  1  2
##  [26]  2  0  2 10  2  3  5  3  1  9  6  8  1  6  3  9  5  8  4  4  8  0  3  7  6
##  [51]  3 10  3  1  0  1  2  4  5  3 12  2  3  2  5  1  3  7  0 10  2  9  2  2  3
##  [76] 11 10  2  8 16  3  6  3  2  7  1  6  1  1  1  1  0  5 10  8  8  3  3  8  5

Membangkitkan data X2

X2 : Status pekerjaan Keterangan yang digunakan (0=Tidak bekerja) dan (1=Bekerja)

set.seed(2)
x2 <- round(runif(n))
x2
##   [1] 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1
##  [38] 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
##  [75] 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0

Membangkitkan data X3

X3 : Tingkat pendidikan Keterangan yang digunakan (0=Lulusan SMA) dan (1=Lulusan PTN)

set.seed(3)
x3 <- round(runif(n))
x3
##   [1] 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1
##  [38] 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1
##  [75] 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1

Membangkitkan data X4

X4 : IPK Keterangan yang digunakan (data pelamar dengan skala 4)

set.seed(4)
x4 <- round(rnorm(n,3,0.5),2)
x4
##   [1] 3.11 2.73 3.45 3.30 3.82 3.34 2.36 2.89 3.95 3.89 3.28 3.01 3.19 2.98 3.02
##  [16] 3.08 3.58 2.98 2.95 2.86 3.77 3.08 3.65 3.64 3.30 2.86 3.63 3.45 2.54 3.62
##  [31] 3.08 3.53 2.62 2.26 3.43 2.80 2.89 3.47 2.77 2.68 3.67 3.09 3.65 2.16 2.59
##  [46] 2.57 3.05 2.81 3.36 2.10 2.67 2.69 2.96 3.22 3.99 2.70 2.72 3.35 2.92 3.67
##  [61] 2.47 3.53 2.34 4.03 3.07 2.88 2.80 3.44 3.26 2.91 3.08 2.76 2.52 3.09 3.36
##  [76] 2.82 3.12 2.67 2.60 2.97 3.64 2.89 2.71 2.26 2.48 2.35 2.58 2.43 3.18 2.90
##  [91] 2.36 2.60 3.08 3.31 3.34 2.98 4.17 2.71 3.48 2.86

Membangkitkan data Y

b0 <- -11
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 2.2
set.seed(1)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapendukung
##   [1]  2.842  5.206 11.090 38.260  4.104 38.048 43.192 13.358 17.890  0.758
##  [11]  2.916  1.822 20.218  5.256 22.844  9.476 18.376 82.256  5.190 23.292
##  [21] 46.794 -0.724 15.030  0.508  3.260  4.992 -0.314  6.290 32.788  6.664
##  [31]  6.276 14.266  5.764 -2.028 28.546 16.660 26.558  0.134 19.294  5.396
##  [41] 29.074 15.998 25.030 10.452  9.198 23.154 -3.790  5.682 21.392 17.820
##  [51]  5.374 29.918  9.212  2.784  0.478  1.640  2.484 10.870 13.424  8.074
##  [61] 39.634  4.266  7.848  4.866 16.454 -1.164  8.360 23.768 -3.828 30.402
##  [71]  5.476 29.272  4.244  5.498  9.592 36.904 30.864  2.374 25.420 54.734
##  [81] 10.208 19.558  5.462  0.972 21.656  0.870 16.176 -2.154  2.696  1.580
##  [91] -1.808 -5.280 13.276 34.482 27.048 23.556  8.674  5.462 24.656 15.492
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.944903676 0.994546341 0.999984736 1.000000000 0.983761524 1.000000000
##   [7] 1.000000000 0.999998420 0.999999983 0.680919355 0.948631730 0.860805938
##  [13] 0.999999998 0.994810939 1.000000000 0.999923336 0.999999990 1.000000000
##  [19] 0.994458868 1.000000000 1.000000000 0.326512765 0.999999703 0.624337511
##  [25] 0.963030791 0.993253754 0.422138686 0.998148674 1.000000000 0.998725594
##  [31] 0.998122622 0.999999363 0.996871287 0.116294304 1.000000000 0.999999942
##  [37] 1.000000000 0.533449963 0.999999996 0.995485787 1.000000000 0.999999887
##  [43] 1.000000000 0.999971110 0.999898769 1.000000000 0.022096322 0.996604828
##  [49] 0.999999999 0.999999982 0.995385837 1.000000000 0.999900176 0.941805065
##  [55] 0.617275493 0.837534937 0.923012521 0.999980980 0.999998521 0.999688562
##  [61] 1.000000000 0.986156510 0.999609620 0.992354779 0.999999929 0.237941224
##  [67] 0.999766010 1.000000000 0.021289956 1.000000000 0.995831409 1.000000000
##  [73] 0.985852935 0.995921747 0.999931732 1.000000000 1.000000000 0.914823065
##  [79] 1.000000000 1.000000000 0.999963127 0.999999997 0.995772887 0.725517961
##  [85] 1.000000000 0.704745698 0.999999906 0.103958029 0.936790200 0.829204518
##  [91] 0.140880018 0.005066629 0.999998285 1.000000000 1.000000000 1.000000000
##  [97] 0.999829055 0.995772887 1.000000000 0.999999813
set.seed(2)
y <- rbinom(n,1,p)
y
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
##  [38] 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1
##  [75] 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##     y x1 x2 x3   x4
## 1   1  2  0  0 3.11
## 2   1  2  1  1 2.73
## 3   1  4  1  0 3.45
## 4   1 12  0  0 3.30
## 5   1  1  1  1 3.82
## 6   1 11  1  1 3.34
## 7   1 14  0  0 2.36
## 8   1  5  1  0 2.89
## 9   1  5  0  1 3.95
## 10  1  0  1  1 3.89
## 11  1  1  1  1 3.28
## 12  1  1  0  1 3.01
## 13  1  6  1  1 3.19
## 14  1  2  0  1 2.98
## 15  1  7  0  1 3.02
## 16  1  3  1  1 3.08
## 17  1  6  1  0 3.58
## 18  1 24  0  1 2.98
## 19  1  2  0  1 2.95
## 20  1  8  0  0 2.86
## 21  1 14  1  0 3.77
## 22  1  1  0  0 3.08
## 23  1  5  1  0 3.65
## 24  1  1  0  0 3.64
## 25  1  2  0  0 3.30
## 26  1  2  0  1 2.86
## 27  0  0  0  1 3.63
## 28  1  2  0  1 3.45
## 29  1 10  1  1 2.54
## 30  1  2  0  1 3.62
## 31  1  3  0  0 3.08
## 32  1  5  0  0 3.53
## 33  1  3  1  0 2.62
## 34  1  1  1  0 2.26
## 35  1  9  1  0 3.43
## 36  1  6  1  0 2.80
## 37  1  8  1  1 2.89
## 38  0  1  0  0 3.47
## 39  1  6  1  1 2.77
## 40  1  3  0  0 2.68
## 41  1  9  1  0 3.67
## 42  1  5  0  1 3.09
## 43  1  8  0  0 3.65
## 44  1  4  0  1 2.16
## 45  1  4  1  0 2.59
## 46  1  8  1  0 2.57
## 47  0  0  1  0 3.05
## 48  1  3  0  0 2.81
## 49  1  7  1  0 3.36
## 50  1  6  1  1 2.10
## 51  1  3  0  0 2.67
## 52  1 10  0  0 2.69
## 53  1  3  1  1 2.96
## 54  1  1  1  1 3.22
## 55  0  0  0  1 3.99
## 56  1  1  1  1 2.70
## 57  1  2  1  0 2.72
## 58  1  4  1  0 3.35
## 59  1  5  1  0 2.92
## 60  1  3  1  0 3.67
## 61  1 12  1  1 2.47
## 62  1  2  1  0 3.53
## 63  1  3  1  1 2.34
## 64  1  2  0  0 4.03
## 65  1  5  1  1 3.07
## 66  0  1  0  0 2.88
## 67  1  3  0  1 2.80
## 68  1  7  0  1 3.44
## 69  0  0  0  0 3.26
## 70  1 10  0  0 2.91
## 71  1  2  0  1 3.08
## 72  1  9  0  1 2.76
## 73  1  2  0  1 2.52
## 74  1  2  0  1 3.09
## 75  1  3  0  1 3.36
## 76  1 11  1  1 2.82
## 77  1 10  0  0 3.12
## 78  1  2  1  0 2.67
## 79  1  8  0  1 2.60
## 80  1 16  1  1 2.97
## 81  1  3  0  1 3.64
## 82  1  6  1  1 2.89
## 83  1  3  0  0 2.71
## 84  0  2  0  0 2.26
## 85  1  7  0  1 2.48
## 86  0  1  1  1 2.35
## 87  1  6  1  0 2.58
## 88  0  1  0  0 2.43
## 89  1  1  1  1 3.18
## 90  1  1  0  1 2.90
## 91  0  1  1  0 2.36
## 92  0  0  0  0 2.60
## 93  1  5  0  0 3.08
## 94  1 10  1  1 3.31
## 95  1  8  0  1 3.34
## 96  1  8  0  0 2.98
## 97  1  3  0  0 4.17
## 98  1  3  0  0 2.71
## 99  1  8  0  0 3.48
## 100 1  5  0  1 2.86

Analisis Regresi Logistik

kesimpulan <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"),data = datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(kesimpulan)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -17.639      7.647  -2.307   0.0211 *
## x1             4.672      1.836   2.544   0.0110 *
## x2             2.936      1.773   1.656   0.0977 .
## x3             1.693      1.285   1.317   0.1878  
## x4             3.890      1.915   2.032   0.0422 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 69.303  on 99  degrees of freedom
## Residual deviance: 18.090  on 95  degrees of freedom
## AIC: 28.09
## 
## Number of Fisher Scoring iterations: 11

`