Membangkitkan Data

skenario

Y :Keputusan menolak / menerima pelamar kerja PT A posisi B X1 :Lama pengalaman kerja sebelumnya (bulan) X2 :Status pekerjaan saat ini (0:Bekerja, 1:Tidak bekerja) X3 :Tingkat pendidikan (0: Lulusan Sekolah Menengah, 1:Lulusan Perguruan Tinggi) X4 :IPK (Skala 4)

Membangkitkan Data X1

X1 :Lama pengalaman kerja sebelumnya (bulan) Membangkitkan variabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

X1 <- round (60*(-(log(1-u)/12)))
X1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

Membangkitkan Data X2

X2 :Status pekerjaan Keterangan yang digunakan (0:Bekerja, 1:Tidak bekerja)

set.seed(123)
X2 <- round(runif(n))
X2
##   [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
##  [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
##  [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1

Membangkitkan Data X3

X3 :Tingkat Pendidikan Keterangan yang digunakan (0: Lulusan Sekolah Menengah, 1:Lulusan Perguruan Tinggi)

set.seed(123)
X3 <- round(runif(n))
X3
##   [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
##  [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
##  [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1

Membangkitkan Data X4

X3 : Data IPK pelamar dengan skala 4

set.seed(123)
X4 <- round(rnorm(n,3,0.5),2)
X4
##   [1] 2.72 2.88 3.78 3.04 3.06 3.86 3.23 2.37 2.66 2.78 3.61 3.18 3.20 3.06 2.72
##  [16] 3.89 3.25 2.02 3.35 2.76 2.47 2.89 2.49 2.64 2.69 2.16 3.42 3.08 2.43 3.63
##  [31] 3.21 2.85 3.45 3.44 3.41 3.34 3.28 2.97 2.85 2.81 2.65 2.90 2.37 4.08 3.60
##  [46] 2.44 2.80 2.77 3.39 2.96 3.13 2.99 2.98 3.68 2.89 3.76 2.23 3.29 3.06 3.11
##  [61] 3.19 2.75 2.83 2.49 2.46 3.15 3.22 3.03 3.46 4.03 2.75 1.85 3.50 2.65 2.66
##  [76] 3.51 2.86 2.39 3.09 2.93 3.00 3.19 2.81 3.32 2.89 3.17 3.55 3.22 2.84 3.57
##  [91] 3.50 3.27 3.12 2.69 3.68 2.70 4.09 3.77 2.88 2.49

Membangkitkan Data Y

menentukan koefisien

b0 <- -11
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 1.2
set.seed(123)
DataPendukung <- b0 + (b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
DataPendukung
##   [1] -0.736 -0.844  7.536 -4.152  6.372  4.132 24.076  2.044  9.392 -4.164
##  [11] 14.032 31.316  3.040  6.372 16.764 17.868 -3.600 -1.576  0.020 16.512
##  [21]  9.164 16.668  9.188 19.868  5.928 -1.708 20.804 34.396  5.916  0.356
##  [31]  6.552 41.120  3.340 48.828 14.092 31.508 -0.364 10.064 72.920 -4.128
##  [41] -0.820 27.480 19.844 25.396 10.820  2.428 20.360 30.824 -3.432  2.752
##  [51] -0.244 -3.912 -0.724  0.416  9.668 -2.988 -4.824 -0.352 13.372 -3.768
##  [61]  6.528  9.800 48.396 12.988  5.652 -0.220  6.564  6.336 -0.148 14.836
##  [71]  6.000  1.420 10.400 51.680  9.692 10.712 27.432 19.568 24.208 -7.484
##  [81]  3.100 13.528 37.872 66.184 -7.532  6.804 20.960 -0.436  2.608 17.784
##  [91] 35.200 -0.376 -0.256  5.928 35.416 -0.760 11.108 -2.976 -7.544 19.688
p <- exp(DataPendukung)/ (1 + exp(DataPendukung))
p
##   [1] 0.3238794522 0.3006930071 0.9994667570 0.0154892284 0.9982941765
##   [6] 0.9842028114 1.0000000000 0.8853399468 0.9999166184 0.0153072966
##  [11] 0.9999991947 1.0000000000 0.9543488292 0.9982941765 0.9999999476
##  [16] 0.9999999826 0.0265969936 0.1713627258 0.5049998333 0.9999999326
##  [21] 0.9998952679 0.9999999423 0.9998977513 0.9999999976 0.9973432727
##  [26] 0.1534233049 0.9999999991 1.0000000000 0.9973112862 0.5880718032
##  [31] 0.9985747759 1.0000000000 0.9657758423 1.0000000000 0.9999992416
##  [36] 1.0000000000 0.4099916248 0.9999574165 1.0000000000 0.0158594997
##  [41] 0.3057636599 1.0000000000 0.9999999976 1.0000000000 0.9999800048
##  [46] 0.9189376751 0.9999999986 1.0000000000 0.0313102156 0.9400262030
##  [51] 0.4393008503 0.0196082854 0.3265127646 0.6025256899 0.9999367277
##  [56] 0.0479709468 0.0079705444 0.4128975105 0.9999984418 0.0225767314
##  [61] 0.9985402073 0.9999445515 1.0000000000 0.9999977124 0.9965017916
##  [66] 0.4452207649 0.9985917525 0.9982317586 0.4630673897 0.9999996396
##  [71] 0.9975273768 0.8053384164 0.9999695684 1.0000000000 0.9999382281
##  [76] 0.9999777245 1.0000000000 0.9999999968 1.0000000000 0.0005616892
##  [81] 0.9568927451 0.9999986669 1.0000000000 1.0000000000 0.0005353791
##  [86] 0.9988919003 0.9999999992 0.3926945008 0.9313746747 0.9999999811
##  [91] 1.0000000000 0.4070920095 0.4363472498 0.9973432727 1.0000000000
##  [96] 0.3186462662 0.9999850083 0.0485219659 0.0005289963 0.9999999972
set.seed(123)
y <- rbinom(n,1,p)
y
##   [1] 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1
datagab <- data.frame(y,X1,X2,X3,X4)
datagab
##     y X1 X2 X3   X4
## 1   0  2  0  0 2.72
## 2   1  1  1  1 2.88
## 3   1  4  0  0 3.78
## 4   0  0  1  1 3.04
## 5   1  3  1  1 3.06
## 6   1  3  0  0 3.86
## 7   1  8  1  1 3.23
## 8   0  2  1  1 2.37
## 9   1  4  1  1 2.66
## 10  0  1  0  0 2.78
## 11  1  5  1  1 3.61
## 12  1 11  0  0 3.18
## 13  1  2  1  1 3.20
## 14  1  3  1  1 3.06
## 15  1  7  0  0 2.72
## 16  1  6  1  1 3.89
## 17  0  1  0  0 3.25
## 18  0  2  0  0 2.02
## 19  1  2  0  0 3.35
## 20  1  6  1  1 2.76
## 21  1  4  1  1 2.47
## 22  1  6  1  1 2.89
## 23  1  4  1  1 2.49
## 24  1  7  1  1 2.64
## 25  1  3  1  1 2.69
## 26  0  1  1  1 2.16
## 27  1  7  1  1 3.42
## 28  1 11  1  1 3.08
## 29  1  4  0  0 2.43
## 30  1  2  0  0 3.63
## 31  1  3  1  1 3.21
## 32  1 13  1  1 2.85
## 33  1  2  1  1 3.45
## 34  1 15  1  1 3.44
## 35  1  6  0  0 3.41
## 36  1 11  0  0 3.34
## 37  0  1  1  1 3.28
## 38  1  5  0  0 2.97
## 39  1 23  0  0 2.85
## 40  0  1  0  0 2.81
## 41  0  2  0  0 2.65
## 42  1 10  0  0 2.90
## 43  1  8  0  0 2.37
## 44  1  9  0  0 4.08
## 45  1  5  0  0 3.60
## 46  1  3  0  0 2.44
## 47  1  8  0  0 2.80
## 48  1 11  0  0 2.77
## 49  0  1  0  0 3.39
## 50  1  2  1  1 2.96
## 51  0  2  0  0 3.13
## 52  0  1  0  0 2.99
## 53  1  1  1  1 2.98
## 54  1  2  0  0 3.68
## 55  1  4  1  1 2.89
## 56  0  1  0  0 3.76
## 57  0  1  0  0 2.23
## 58  0  1  1  1 3.29
## 59  1  5  1  1 3.06
## 60  0  1  0  0 3.11
## 61  1  3  1  1 3.19
## 62  1  5  0  0 2.75
## 63  1 16  0  0 2.83
## 64  1  6  0  0 2.49
## 65  1  3  1  1 2.46
## 66  0  2  0  0 3.15
## 67  1  3  1  1 3.22
## 68  1  3  1  1 3.03
## 69  1  1  1  1 3.46
## 70  1  6  0  0 4.03
## 71  1  3  1  1 2.75
## 72  0  2  1  1 1.85
## 73  1  4  1  1 3.50
## 74  1 17  0  0 2.65
## 75  1  5  0  0 2.66
## 76  1  5  0  0 3.51
## 77  1 10  0  0 2.86
## 78  1  7  1  1 2.39
## 79  1  9  0  0 3.09
## 80  0  0  0  0 2.93
## 81  1  3  0  0 3.00
## 82  1  5  1  1 3.19
## 83  1 13  0  0 2.81
## 84  1 20  1  1 3.32
## 85  0  0  0  0 2.89
## 86  1  4  0  0 3.17
## 87  1  7  1  1 3.55
## 88  0  1  1  1 3.22
## 89  1  2  1  1 2.84
## 90  1  7  0  0 3.57
## 91  1 12  0  0 3.50
## 92  0  1  1  1 3.27
## 93  0  2  0  0 3.12
## 94  1  3  1  1 2.69
## 95  1 12  0  0 3.68
## 96  1  2  0  0 2.70
## 97  1  4  1  1 4.09
## 98  0  1  0  0 3.77
## 99  0  0  0  0 2.88
## 100 1  7  1  1 2.49

Analisis Regresi Logistik

modelreglog <- glm(y~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), data = datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -19.836      7.139  -2.779  0.00546 **
## X1             4.130      1.394   2.963  0.00305 **
## X2             3.487      1.484   2.350  0.01876 * 
## X3                NA         NA      NA       NA   
## X4             3.600      1.564   2.302  0.02136 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 114.611  on 99  degrees of freedom
## Residual deviance:  26.065  on 96  degrees of freedom
## AIC: 34.065
## 
## Number of Fisher Scoring iterations: 10