#df

#packages

library("tidyverse")

#t.test por genero - funcion física

t.test(df$Función.física~df$Genero)

    Welch Two Sample t-test

data:  df$Función.física by df$Genero
t = -0.88142, df = 35.146, p-value = 0.3841
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.698558  1.064500
sample estimates:
mean in group F mean in group M 
       16.79167        17.60870 

#t.test genero - psicosocial

t.test(df$Función.psicosocial~df$Genero)

    Welch Two Sample t-test

data:  df$Función.psicosocial by df$Genero
t = 0.058917, df = 44.988, p-value = 0.9533
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.104154  2.230966
sample estimates:
mean in group F mean in group M 
       26.54167        26.47826 

#t.test genero - dolor y malestar

t.test(df$Dolor.y.malestar~df$Genero)

    Welch Two Sample t-test

data:  df$Dolor.y.malestar by df$Genero
t = -1.0077, df = 36.033, p-value = 0.3203
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.7191384  0.5778341
sample estimates:
mean in group F mean in group M 
       8.125000        8.695652 

#t.test genero - total

t.test(df$TOTAL.GOHAI~df$Genero)

    Welch Two Sample t-test

data:  df$TOTAL.GOHAI by df$Genero
t = -0.66074, df = 37.019, p-value = 0.5129
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -5.385133  2.736583
sample estimates:
mean in group F mean in group M 
       51.45833        52.78261 

#ANOVA para nivel educacional - funcion fisica

summary(anova1)
                       Df Sum Sq Mean Sq F value Pr(>F)
df$Nivel.educativo_dic  4   22.0   5.512   0.513  0.726
Residuals              42  451.2  10.744               

#ANOVA para nivel educacional - funcion psicosocial

summary(anova2)
                       Df Sum Sq Mean Sq F value Pr(>F)
df$Nivel.educativo_dic  4   74.3   18.57   1.446  0.236
Residuals              42  539.5   12.84               

#ANOVA para nivel educacional - door y malestar

summary(anova3)
                       Df Sum Sq Mean Sq F value Pr(>F)
df$Nivel.educativo_dic  4   7.55   1.887   0.467   0.76
Residuals              42 169.77   4.042               

#ANOVA para nivel educacional - total

summary(anova4)
                       Df Sum Sq Mean Sq F value Pr(>F)
df$Nivel.educativo_dic  4  118.8   29.71   0.602  0.663
Residuals              42 2071.6   49.32               

#t.test para estado de vida - funcion fisica

t.test(df$Función.física~df$Estado.de.vida)

    Welch Two Sample t-test

data:  df$Función.física by df$Estado.de.vida
t = -0.31955, df = 10.422, p-value = 0.7556
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.117518  3.079680
sample estimates:
mean in group Con otros      mean in group Solo 
               17.08108                17.60000 

#t.test para estado de vida - funcion psicosocial

t.test(df$Función.psicosocial~df$Estado.de.vida)

    Welch Two Sample t-test

data:  df$Función.psicosocial by df$Estado.de.vida
t = -0.50377, df = 10.83, p-value = 0.6245
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.708862  2.957511
sample estimates:
mean in group Con otros      mean in group Solo 
               26.32432                27.20000 

#t.test para estado de vida - dolor y malestar

t.test(df$Dolor.y.malestar~df$Estado.de.vida)

    Welch Two Sample t-test

data:  df$Dolor.y.malestar by df$Estado.de.vida
t = -0.74199, df = 15.027, p-value = 0.4695
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.9465491  0.9411437
sample estimates:
mean in group Con otros      mean in group Solo 
               8.297297                8.800000 

#t.test para estado de vida - total

t.test(df$TOTAL.GOHAI~df$Estado.de.vida)

    Welch Two Sample t-test

data:  df$TOTAL.GOHAI by df$Estado.de.vida
t = -0.52997, df = 10.247, p-value = 0.6074
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -9.848078  6.053483
sample estimates:
mean in group Con otros      mean in group Solo 
                51.7027                 53.6000 

#t.test capaz de pagar gastos subsistencia- función física

t.test(df$Función.física~df$Capaz.de.pagar.los.gastos.de.subsistencia)

    Welch Two Sample t-test

data:  df$Función.física by df$Capaz.de.pagar.los.gastos.de.subsistencia
t = 6.107, df = 44, p-value = 2.349e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 1.965312 3.901354
sample estimates:
mean in group no mean in group si 
        20.00000         17.06667 

#t.test capaz de pagar gastos subsistencia-psicosocial

t.test(df$Función.psicosocial~df$Capaz.de.pagar.los.gastos.de.subsistencia)

    Welch Two Sample t-test

data:  df$Función.psicosocial by df$Capaz.de.pagar.los.gastos.de.subsistencia
t = 2.2782, df = 1.6928, p-value = 0.1729
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.271455  8.471455
sample estimates:
mean in group no mean in group si 
            29.0             26.4 

#t.test capaz de pagar gastos subsistencia-dolor y maletar

t.test(df$Dolor.y.malestar~df$Capaz.de.pagar.los.gastos.de.subsistencia)

    Welch Two Sample t-test

data:  df$Dolor.y.malestar by df$Capaz.de.pagar.los.gastos.de.subsistencia
t = 5.6548, df = 44, p-value = 1.083e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 1.072667 2.260666
sample estimates:
mean in group no mean in group si 
       10.000000         8.333333 

#t.test capaz de pagar gastos subsistencia-total

t.test(df$TOTAL.GOHAI~df$Capaz.de.pagar.los.gastos.de.subsistencia)

    Welch Two Sample t-test

data:  df$TOTAL.GOHAI by df$Capaz.de.pagar.los.gastos.de.subsistencia
t = 5.0224, df = 4.1194, p-value = 0.006822
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  3.264837 11.135163
sample estimates:
mean in group no mean in group si 
            59.0             51.8 

#t.test para presencia de dolor bucal - función física

t.test(df$Función.física~df$Presencia.dolor.bucal)

    Welch Two Sample t-test

data:  df$Función.física by df$Presencia.dolor.bucal
t = 1.6114, df = 18.606, p-value = 0.1239
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5717644  4.3741837
sample estimates:
mean in group no mean in group si 
        17.83871         15.93750 

#t.test presencia de dolor bucal-psicosocial

t.test(df$Función.psicosocial~df$Presencia.dolor.bucal)

    Welch Two Sample t-test

data:  df$Función.psicosocial by df$Presencia.dolor.bucal
t = 1.5685, df = 20.805, p-value = 0.1319
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.6552518  4.6673486
sample estimates:
mean in group no mean in group si 
        27.19355         25.18750 

#t.test presencia de dolor bucal-dolor y malestar

t.test(df$Dolor.y.malestar~df$Presencia.dolor.bucal)

    Welch Two Sample t-test

data:  df$Dolor.y.malestar by df$Presencia.dolor.bucal
t = 2.9736, df = 19.231, p-value = 0.007733
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.5754483 3.3035840
sample estimates:
mean in group no mean in group si 
        9.064516         7.125000 

#t.test presencia de dolor bucal-total

t.test(df$TOTAL.GOHAI~df$Presencia.dolor.bucal)

    Welch Two Sample t-test

data:  df$TOTAL.GOHAI by df$Presencia.dolor.bucal
t = 2.4762, df = 19.509, p-value = 0.02258
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  0.9135172 10.7800311
sample estimates:
mean in group no mean in group si 
        54.09677         48.25000 

#t.test para presencia de halitosis - funcion fisica

t.test(df$Función.física~df$Halitosis.percibida)

    Welch Two Sample t-test

data:  df$Función.física by df$Halitosis.percibida
t = -0.48961, df = 26.6, p-value = 0.6284
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.607656  1.603489
sample estimates:
mean in group no mean in group si 
        17.03125         17.53333 

#t.test para presencia de halitosis -psicosocial

t.test(df$Función.psicosocial~df$Halitosis.percibida)

    Welch Two Sample t-test

data:  df$Función.psicosocial by df$Halitosis.percibida
t = -0.58051, df = 33.222, p-value = 0.5655
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.796135  1.554468
sample estimates:
mean in group no mean in group si 
        26.31250         26.93333 

#t.test para presencia de halitosis -dolor y maletar

t.test(df$Dolor.y.malestar~df$Halitosis.percibida)

    Welch Two Sample t-test

data:  df$Dolor.y.malestar by df$Halitosis.percibida
t = 1.4568, df = 21.243, p-value = 0.1598
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.4203007  2.3911340
sample estimates:
mean in group no mean in group si 
        8.718750         7.733333 

#t.test para presencia de halitosis -total

t.test(df$TOTAL.GOHAI~df$Halitosis.percibida)

    Welch Two Sample t-test

data:  df$TOTAL.GOHAI by df$Halitosis.percibida
t = -0.062277, df = 26.723, p-value = 0.9508
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.66986  4.39486
sample estimates:
mean in group no mean in group si 
         52.0625          52.2000 

#t.test sequedad de boca -funcion fisica

t.test(df$Función.física~df$Sequedad.de.boca.percibida)

    Welch Two Sample t-test

data:  df$Función.física by df$Sequedad.de.boca.percibida
t = -0.57644, df = 43.328, p-value = 0.5673
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.45258  1.36200
sample estimates:
mean in group no mean in group si 
        16.91304         17.45833 

#t.test sequedad de boca -psicosocial

t.test(df$Función.psicosocial~df$Sequedad.de.boca.percibida)

    Welch Two Sample t-test

data:  df$Función.psicosocial by df$Sequedad.de.boca.percibida
t = 0.89935, df = 44.806, p-value = 0.3733
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.188115  3.104782
sample estimates:
mean in group no mean in group si 
        27.00000         26.04167 

#t.test sequedad de boca -dolor y malestar

t.test(df$Dolor.y.malestar~df$Sequedad.de.boca.percibida)

    Welch Two Sample t-test

data:  df$Dolor.y.malestar by df$Sequedad.de.boca.percibida
t = 0.10305, df = 44.34, p-value = 0.9184
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.109187  1.228752
sample estimates:
mean in group no mean in group si 
        8.434783         8.375000 

#t.test sequedad de boca -total

t.test(df$TOTAL.GOHAI~df$Sequedad.de.boca.percibida)

    Welch Two Sample t-test

data:  df$TOTAL.GOHAI by df$Sequedad.de.boca.percibida
t = 0.2332, df = 44.392, p-value = 0.8167
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.612393  4.558046
sample estimates:
mean in group no mean in group si 
        52.34783         51.87500 
LS0tCnRpdGxlOiAiMjAyNF9UZXNpc19HT0hBSSB5IFBQUiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojZGYKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UkJLWmRfYVBFMTQxZXZ1XzBMQWNhbTRTRkdXd1FqZHRCSTc3VzRubTZEM1RZUFMweUlWUVpKQklFOXI5Y0dvZXFoU1FRYkRpeHhmY3FEL3B1Yj9naWQ9ODYyNzk2Mjg5JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI3BhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpgYGAKI3QudGVzdCBwb3IgZ2VuZXJvIC0gZnVuY2lvbiBmw61zaWNhCmBgYHtyfQp0LnRlc3QoZGYkRnVuY2nDs24uZsOtc2ljYX5kZiRHZW5lcm8pCmBgYAojdC50ZXN0IGdlbmVybyAtIHBzaWNvc29jaWFsCmBgYHtyfQp0LnRlc3QoZGYkRnVuY2nDs24ucHNpY29zb2NpYWx+ZGYkR2VuZXJvKQpgYGAKI3QudGVzdCBnZW5lcm8gLSBkb2xvciB5IG1hbGVzdGFyCmBgYHtyfQp0LnRlc3QoZGYkRG9sb3IueS5tYWxlc3Rhcn5kZiRHZW5lcm8pCmBgYAojdC50ZXN0IGdlbmVybyAtIHRvdGFsCmBgYHtyfQp0LnRlc3QoZGYkVE9UQUwuR09IQUl+ZGYkR2VuZXJvKQpgYGAKI0FOT1ZBIHBhcmEgbml2ZWwgZWR1Y2FjaW9uYWwgLSBmdW5jaW9uIGZpc2ljYQpgYGB7cn0KYW5vdmExIDwtIGFvdihkZiRGdW5jacOzbi5mw61zaWNhfmRmJE5pdmVsLmVkdWNhdGl2b19kaWMpCnN1bW1hcnkoYW5vdmExKQpgYGAKI0FOT1ZBIHBhcmEgbml2ZWwgZWR1Y2FjaW9uYWwgLSBmdW5jaW9uIHBzaWNvc29jaWFsCmBgYHtyfQphbm92YTIgPC0gYW92KGRmJEZ1bmNpw7NuLnBzaWNvc29jaWFsfmRmJE5pdmVsLmVkdWNhdGl2b19kaWMpCnN1bW1hcnkoYW5vdmEyKQpgYGAKI0FOT1ZBIHBhcmEgbml2ZWwgZWR1Y2FjaW9uYWwgLSBkb29yIHkgbWFsZXN0YXIKYGBge3J9CmFub3ZhMyA8LSBhb3YoZGYkRG9sb3IueS5tYWxlc3Rhcn5kZiROaXZlbC5lZHVjYXRpdm9fZGljKQpzdW1tYXJ5KGFub3ZhMykKYGBgCiNBTk9WQSBwYXJhIG5pdmVsIGVkdWNhY2lvbmFsIC0gdG90YWwKYGBge3J9CmFub3ZhNCA8LSBhb3YoZGYkVE9UQUwuR09IQUl+ZGYkTml2ZWwuZWR1Y2F0aXZvX2RpYykKc3VtbWFyeShhbm92YTQpCmBgYAojdC50ZXN0IHBhcmEgZXN0YWRvIGRlIHZpZGEgLSBmdW5jaW9uIGZpc2ljYQpgYGB7cn0KdC50ZXN0KGRmJEZ1bmNpw7NuLmbDrXNpY2F+ZGYkRXN0YWRvLmRlLnZpZGEpCmBgYAojdC50ZXN0IHBhcmEgZXN0YWRvIGRlIHZpZGEgLSBmdW5jaW9uIHBzaWNvc29jaWFsCmBgYHtyfQp0LnRlc3QoZGYkRnVuY2nDs24ucHNpY29zb2NpYWx+ZGYkRXN0YWRvLmRlLnZpZGEpCmBgYAojdC50ZXN0IHBhcmEgZXN0YWRvIGRlIHZpZGEgLSBkb2xvciB5IG1hbGVzdGFyCmBgYHtyfQp0LnRlc3QoZGYkRG9sb3IueS5tYWxlc3Rhcn5kZiRFc3RhZG8uZGUudmlkYSkKYGBgCiN0LnRlc3QgcGFyYSBlc3RhZG8gZGUgdmlkYSAtIHRvdGFsCmBgYHtyfQp0LnRlc3QoZGYkVE9UQUwuR09IQUl+ZGYkRXN0YWRvLmRlLnZpZGEpCmBgYAojdC50ZXN0IGNhcGF6IGRlIHBhZ2FyIGdhc3RvcyBzdWJzaXN0ZW5jaWEtIGZ1bmNpw7NuIGbDrXNpY2EKYGBge3J9CnQudGVzdChkZiRGdW5jacOzbi5mw61zaWNhfmRmJENhcGF6LmRlLnBhZ2FyLmxvcy5nYXN0b3MuZGUuc3Vic2lzdGVuY2lhKQpgYGAKI3QudGVzdCBjYXBheiBkZSBwYWdhciBnYXN0b3Mgc3Vic2lzdGVuY2lhLXBzaWNvc29jaWFsCmBgYHtyfQp0LnRlc3QoZGYkRnVuY2nDs24ucHNpY29zb2NpYWx+ZGYkQ2FwYXouZGUucGFnYXIubG9zLmdhc3Rvcy5kZS5zdWJzaXN0ZW5jaWEpCmBgYAojdC50ZXN0IGNhcGF6IGRlIHBhZ2FyIGdhc3RvcyBzdWJzaXN0ZW5jaWEtZG9sb3IgeSBtYWxldGFyCmBgYHtyfQp0LnRlc3QoZGYkRG9sb3IueS5tYWxlc3Rhcn5kZiRDYXBhei5kZS5wYWdhci5sb3MuZ2FzdG9zLmRlLnN1YnNpc3RlbmNpYSkKYGBgCiN0LnRlc3QgY2FwYXogZGUgcGFnYXIgZ2FzdG9zIHN1YnNpc3RlbmNpYS10b3RhbCAKYGBge3J9CnQudGVzdChkZiRUT1RBTC5HT0hBSX5kZiRDYXBhei5kZS5wYWdhci5sb3MuZ2FzdG9zLmRlLnN1YnNpc3RlbmNpYSkKYGBgCiN0LnRlc3QgcGFyYSBwcmVzZW5jaWEgZGUgZG9sb3IgYnVjYWwgLSBmdW5jacOzbiBmw61zaWNhCmBgYHtyfQp0LnRlc3QoZGYkRnVuY2nDs24uZsOtc2ljYX5kZiRQcmVzZW5jaWEuZG9sb3IuYnVjYWwpCmBgYAojdC50ZXN0IHByZXNlbmNpYSBkZSBkb2xvciBidWNhbC1wc2ljb3NvY2lhbApgYGB7cn0KdC50ZXN0KGRmJEZ1bmNpw7NuLnBzaWNvc29jaWFsfmRmJFByZXNlbmNpYS5kb2xvci5idWNhbCkKYGBgCiN0LnRlc3QgcHJlc2VuY2lhIGRlIGRvbG9yIGJ1Y2FsLWRvbG9yIHkgbWFsZXN0YXIKYGBge3J9CnQudGVzdChkZiREb2xvci55Lm1hbGVzdGFyfmRmJFByZXNlbmNpYS5kb2xvci5idWNhbCkKYGBgCiN0LnRlc3QgcHJlc2VuY2lhIGRlIGRvbG9yIGJ1Y2FsLXRvdGFsCmBgYHtyfQp0LnRlc3QoZGYkVE9UQUwuR09IQUl+ZGYkUHJlc2VuY2lhLmRvbG9yLmJ1Y2FsKQpgYGAKI3QudGVzdCBwYXJhIHByZXNlbmNpYSBkZSBoYWxpdG9zaXMgLSBmdW5jaW9uIGZpc2ljYQpgYGB7cn0KdC50ZXN0KGRmJEZ1bmNpw7NuLmbDrXNpY2F+ZGYkSGFsaXRvc2lzLnBlcmNpYmlkYSkKYGBgCiN0LnRlc3QgcGFyYSBwcmVzZW5jaWEgZGUgaGFsaXRvc2lzIC1wc2ljb3NvY2lhbApgYGB7cn0KdC50ZXN0KGRmJEZ1bmNpw7NuLnBzaWNvc29jaWFsfmRmJEhhbGl0b3Npcy5wZXJjaWJpZGEpCmBgYAojdC50ZXN0IHBhcmEgcHJlc2VuY2lhIGRlIGhhbGl0b3NpcyAtZG9sb3IgeSBtYWxldGFyCmBgYHtyfQp0LnRlc3QoZGYkRG9sb3IueS5tYWxlc3Rhcn5kZiRIYWxpdG9zaXMucGVyY2liaWRhKQpgYGAKI3QudGVzdCBwYXJhIHByZXNlbmNpYSBkZSBoYWxpdG9zaXMgLXRvdGFsCmBgYHtyfQp0LnRlc3QoZGYkVE9UQUwuR09IQUl+ZGYkSGFsaXRvc2lzLnBlcmNpYmlkYSkKYGBgCiN0LnRlc3Qgc2VxdWVkYWQgZGUgYm9jYSAtZnVuY2lvbiBmaXNpY2EKYGBge3J9CnQudGVzdChkZiRGdW5jacOzbi5mw61zaWNhfmRmJFNlcXVlZGFkLmRlLmJvY2EucGVyY2liaWRhKQpgYGAKI3QudGVzdCBzZXF1ZWRhZCBkZSBib2NhIC1wc2ljb3NvY2lhbApgYGB7cn0KdC50ZXN0KGRmJEZ1bmNpw7NuLnBzaWNvc29jaWFsfmRmJFNlcXVlZGFkLmRlLmJvY2EucGVyY2liaWRhKQpgYGAKI3QudGVzdCBzZXF1ZWRhZCBkZSBib2NhIC1kb2xvciB5IG1hbGVzdGFyCmBgYHtyfQp0LnRlc3QoZGYkRG9sb3IueS5tYWxlc3Rhcn5kZiRTZXF1ZWRhZC5kZS5ib2NhLnBlcmNpYmlkYSkKYGBgCiN0LnRlc3Qgc2VxdWVkYWQgZGUgYm9jYSAtdG90YWwKYGBge3J9CnQudGVzdChkZiRUT1RBTC5HT0hBSX5kZiRTZXF1ZWRhZC5kZS5ib2NhLnBlcmNpYmlkYSkKYGBgCgoK