AGR
mdata <- read.table("TPA.AGR.0to5.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 206 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.9598
## - Box-Cox: 0.9422
## - Center+scale: 1.005
## - Double Reversed Log_b(x+a): 1.4982
## - Exp(x): 25.0398
## - Log_b(x+a): 0.9598
## - orderNorm (ORQ): 1.095
## - sqrt(x + a): 0.9627
## - Yeo-Johnson: 0.9422
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 206 nonmissing obs.:
## Estimated statistics:
## - lambda = 0.2510099
## - mean (before standardization) = 5.860783
## - sd (before standardization) = 0.6394679
MASS::truehist(asinh(mdata$V3), nbins = 12)

shapiro.test(asinh(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: asinh(mdata$V3)
## W = 0.99512, p-value = 0.7494
mdata$V3 <- asinh(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.0to5.C.txt")
mdata <- read.table("TPA.AGR.0to5.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.0455
## - Box-Cox: 1.1023
## - Center+scale: 1.1188
## - Double Reversed Log_b(x+a): 1.7542
## - Exp(x): 23.9328
## - Log_b(x+a): 1.0455
## - orderNorm (ORQ): 1.2593
## - sqrt(x + a): 1.1272
## - Yeo-Johnson: 1.1023
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized asinh(x) Transformation with 205 nonmissing obs.:
## Relevant statistics:
## - mean (before standardization) = 3.882789
## - sd (before standardization) = 0.2569503
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99598, p-value = 0.8698
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.0to5.S.txt")
mdata <- read.table("TPA.AGR.0to9.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 206 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.8982
## - Box-Cox: 0.9022
## - Center+scale: 0.9105
## - Double Reversed Log_b(x+a): 1.4282
## - Exp(x): 26.1508
## - Log_b(x+a): 0.8982
## - orderNorm (ORQ): 1.087
## - sqrt(x + a): 0.8945
## - Yeo-Johnson: 0.9092
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 206 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - mean (before standardization) = 7.324105
## - sd (before standardization) = 0.9590447
MASS::truehist(asinh(mdata$V3), nbins = 12)

shapiro.test(asinh(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: asinh(mdata$V3)
## W = 0.99669, p-value = 0.9415
mdata$V3 <- asinh(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.0to9.C.txt")
mdata <- read.table("TPA.AGR.0to9.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1785
## - Box-Cox: 1.1935
## - Center+scale: 1.2217
## - Double Reversed Log_b(x+a): 2.0678
## - Exp(x): 24.291
## - Log_b(x+a): 1.1752
## - orderNorm (ORQ): 1.3162
## - sqrt(x + a): 1.0643
## - Yeo-Johnson: 1.1802
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 205 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - mean (before standardization) = 5.400424
## - sd (before standardization) = 0.7229767
MASS::truehist(asinh(mdata$V3), nbins = 12)

shapiro.test(asinh(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: asinh(mdata$V3)
## W = 0.99522, p-value = 0.7665
mdata$V3 <- asinh(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.0to9.S.txt")
mdata <- read.table("TPA.AGR.6to9.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 206 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.997
## - Box-Cox: 1.0588
## - Center+scale: 1.0162
## - Double Reversed Log_b(x+a): 2.2972
## - Exp(x): 25.202
## - Log_b(x+a): 0.997
## - orderNorm (ORQ): 1.1803
## - sqrt(x + a): 1.0048
## - Yeo-Johnson: 1.0588
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized asinh(x) Transformation with 206 nonmissing obs.:
## Relevant statistics:
## - mean (before standardization) = 5.108199
## - sd (before standardization) = 0.2589609
MASS::truehist(asinh(mdata$V3), nbins = 12)

shapiro.test(asinh(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: asinh(mdata$V3)
## W = 0.99639, p-value = 0.914
mdata$V3 <- asinh(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.6to9.C.txt")
mdata <- read.table("TPA.AGR.6to9.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.9325
## - Box-Cox: 1.0485
## - Center+scale: 1.2243
## - Double Reversed Log_b(x+a): 2.0955
## - Exp(x): 25.2075
## - Log_b(x+a): 0.9325
## - orderNorm (ORQ): 1.1198
## - sqrt(x + a): 1.0573
## - Yeo-Johnson: 1.0485
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized asinh(x) Transformation with 205 nonmissing obs.:
## Relevant statistics:
## - mean (before standardization) = 4.375408
## - sd (before standardization) = 0.2714592
MASS::truehist(asinh(mdata$V3), nbins = 12)

shapiro.test(asinh(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: asinh(mdata$V3)
## W = 0.99357, p-value = 0.5179
mdata$V3 <- asinh(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.6to9.S.txt")
mdata <- read.table("TPA.AGR.10to14.C.txt", fill = T)
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 203 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.9808
## - Box-Cox: 0.9985
## - Center+scale: 1.1507
## - Double Reversed Log_b(x+a): 1.6383
## - Exp(x): 22.6748
## - Log_b(x+a): 0.9808
## - orderNorm (ORQ): 1.072
## - sqrt(x + a): 1.0613
## - Yeo-Johnson: 0.9985
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized asinh(x) Transformation with 203 nonmissing obs.:
## Relevant statistics:
## - mean (before standardization) = 5.638954
## - sd (before standardization) = 0.2323991
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99692, p-value = 0.9608
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.10to14.C.txt")
mdata <- read.table("TPA.AGR.10to14.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2315
## - Box-Cox: 1.2487
## - Center+scale: 1.21
## - Double Reversed Log_b(x+a): 1.6747
## - Exp(x): 26.2172
## - Log_b(x+a): 1.2315
## - orderNorm (ORQ): 1.4463
## - sqrt(x + a): 1.2802
## - Yeo-Johnson: 1.2487
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## center_scale(x) Transformation with 205 nonmissing obs.
## Estimated statistics:
## - mean (before standardization) = 65.84115
## - sd (before standardization) = 16.93093
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99679, p-value = 0.9499
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.10to14.S.txt")
mdata <- read.table("TPA.AGR.p3top1.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 206 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1155
## - Box-Cox: 0.9818
## - Center+scale: 1.1227
## - Double Reversed Log_b(x+a): 1.2148
## - Exp(x): 20.8075
## - Log_b(x+a): 1.1255
## - orderNorm (ORQ): 1.25
## - sqrt(x + a): 1.0158
## - Yeo-Johnson: 0.9952
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 206 nonmissing obs.:
## Estimated statistics:
## - lambda = 0.4862448
## - mean (before standardization) = 4.728521
## - sd (before standardization) = 1.098106
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99733, p-value = 0.9804
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.p3top1.C.txt")
mdata <- read.table("TPA.AGR.p3top1.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.3333
## - Box-Cox: 1.2223
## - Center+scale: 1.158
## - Double Reversed Log_b(x+a): 2.1497
## - Exp(x): 21.799
## - Log_b(x+a): 1.3333
## - orderNorm (ORQ): 1.2633
## - sqrt(x + a): 1.198
## - Yeo-Johnson: 1.2083
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## center_scale(x) Transformation with 205 nonmissing obs.
## Estimated statistics:
## - mean (before standardization) = 11.64849
## - sd (before standardization) = 3.875888
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99523, p-value = 0.7689
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.AGR.p3top1.S.txt")
TPA END MEASUREMENTS
mdata <- read.table("TPA.SFM.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 206 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.9823
## - Box-Cox: 1.014
## - Center+scale: 0.9945
## - Double Reversed Log_b(x+a): 1.7872
## - Exp(x): 26.3313
## - Log_b(x+a): 0.9823
## - orderNorm (ORQ): 1.0437
## - sqrt(x + a): 0.9688
## - Yeo-Johnson: 1.014
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 206 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - mean (before standardization) = 7.533917
## - sd (before standardization) = 1.011196
trait <- asinh(mdata$V3)
MASS::truehist(trait, nbins = 12)

shapiro.test(trait)
##
## Shapiro-Wilk normality test
##
## data: trait
## W = 0.9904, p-value = 0.1876
mdata$V3 <- trait
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.SFM.C.txt")
mdata <- read.table("TPA.SFM.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1763
## - Box-Cox: 1.258
## - Center+scale: 1.5512
## - Double Reversed Log_b(x+a): 1.9716
## - Exp(x): 25.0615
## - Log_b(x+a): 1.1697
## - orderNorm (ORQ): 1.3828
## - sqrt(x + a): 1.2642
## - Yeo-Johnson: 1.2718
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 205 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = 1.462679
## - sd (before standardization) = 0.1220375
trait <- asinh(mdata$V3)
MASS::truehist(trait, nbins = 12)

shapiro.test(trait)
##
## Shapiro-Wilk normality test
##
## data: trait
## W = 0.99302, p-value = 0.4432
mdata$V3 <- trait
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.SFM.S.txt")
mdata <- read.table("TPA.SDM.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.9938
## - Box-Cox: 1.0527
## - Center+scale: 1.0548
## - Double Reversed Log_b(x+a): 1.359
## - Exp(x): 4.2078
## - Log_b(x+a): 0.9845
## - orderNorm (ORQ): 1.1877
## - sqrt(x + a): 1.0262
## - Yeo-Johnson: 1.0563
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 205 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = 0.4357593
## - sd (before standardization) = 0.1252154
trait <- asinh(mdata$V3)
MASS::truehist(trait, nbins = 12)

shapiro.test(trait)
##
## Shapiro-Wilk normality test
##
## data: trait
## W = 0.99412, p-value = 0.6
mdata$V3 <- trait
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.TPA.SDM.S.txt")
mdata <- read.table("TPA.NaKratio.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.6587
## - Box-Cox: 1.2888
## - Center+scale: 1.8185
## - Double Reversed Log_b(x+a): 2.0839
## - Exp(x): 2.1348
## - Log_b(x+a): 1.1862
## - orderNorm (ORQ): 1.2868
## - sqrt(x + a): 1.4583
## - Yeo-Johnson: 1.187
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 205 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = -0.5318303
## - sd (before standardization) = 0.123506
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.87524, p-value = 5.795e-12
mdata <- read.table("TPA.WaterNa.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2725
## - Box-Cox: 1.3258
## - Center+scale: 1.4262
## - Double Reversed Log_b(x+a): 1.8078
## - Exp(x): 25.8745
## - Log_b(x+a): 1.2725
## - orderNorm (ORQ): 1.2223
## - sqrt(x + a): 1.3707
## - Yeo-Johnson: 1.3192
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 205 nonmissing obs and ties
## - 204 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 26.270 51.960 58.107 66.590 111.290
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.97013, p-value = 0.00024
mdata <- read.table("TPA.TissueNa.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 205 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4817
## - Box-Cox: 1.3977
## - Center+scale: 1.6253
## - Double Reversed Log_b(x+a): 2.3298
## - Exp(x): 2.0135
## - Log_b(x+a): 1.349
## - orderNorm (ORQ): 1.2257
## - sqrt(x + a): 1.4343
## - Yeo-Johnson: 1.3588
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 205 nonmissing obs and ties
## - 120 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 0.210 0.403 0.460 0.530 1.040
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.9239, p-value = 8.196e-09
AREA
mdata <- read.table("KAU.AREA.9.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 187 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.3225
## - Box-Cox: 1.0666
## - Center+scale: 1.3225
## - Double Reversed Log_b(x+a): 1.8117
## - Exp(x): 1.3188
## - Log_b(x+a): 0.9553
## - orderNorm (ORQ): 1.1956
## - sqrt(x + a): 1.1176
## - Yeo-Johnson: 1.2834
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 187 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = -1.618907
## - sd (before standardization) = 0.1126557
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.98893, p-value = 0.1545
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.AREA.9.C.txt")
mdata <- read.table("KAU.AREA.16.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 190 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2221
## - Box-Cox: 1.0674
## - Center+scale: 1.2221
## - Double Reversed Log_b(x+a): 1.8524
## - Exp(x): 1.2442
## - Log_b(x+a): 1.0526
## - orderNorm (ORQ): 1.1411
## - sqrt(x + a): 1.0637
## - Yeo-Johnson: 1.0342
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 190 nonmissing obs.:
## Estimated statistics:
## - lambda = -4.99994
## - mean (before standardization) = 0.04508165
## - sd (before standardization) = 0.01245384
shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.98345, p-value = 0.02431
mdata <- read.table("KAU.AREA.16.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 189 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1159
## - Box-Cox: 1.0396
## - Center+scale: 1.1159
## - Double Reversed Log_b(x+a): 1.5859
## - Exp(x): 1.1343
## - Log_b(x+a): 0.999
## - orderNorm (ORQ): 1.1046
## - sqrt(x + a): 1.0586
## - Yeo-Johnson: 1.1044
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 189 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = -1.290742
## - sd (before standardization) = 0.1523645
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.99364, p-value = 0.5916
mdata$V3 <- predict(log_x(mdata$V3, b=10))
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.AREA.16.S.txt")
mdata <- read.table("KAU.AREA.30.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 185 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2773
## - Box-Cox: 1.0999
## - Center+scale: 1.2474
## - Double Reversed Log_b(x+a): 2.1882
## - Exp(x): 1.2388
## - Log_b(x+a): 1.1961
## - orderNorm (ORQ): 1.3983
## - sqrt(x + a): 1.1148
## - Yeo-Johnson: 1.1189
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 185 nonmissing obs.:
## Estimated statistics:
## - lambda = 0.4658924
## - mean (before standardization) = -1.084038
## - sd (before standardization) = 0.1678059
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99635, p-value = 0.9388
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.AREA.30.S.txt")
mdata <- read.table("KAU.AREA.36.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 187 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.9054
## - Box-Cox: 0.9506
## - Center+scale: 0.9506
## - Double Reversed Log_b(x+a): 1.8366
## - Exp(x): 1.0384
## - Log_b(x+a): 1.1698
## - orderNorm (ORQ): 1.0013
## - sqrt(x + a): 0.9768
## - Yeo-Johnson: 0.9547
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized asinh(x) Transformation with 187 nonmissing obs.:
## Relevant statistics:
## - mean (before standardization) = 0.2490761
## - sd (before standardization) = 0.07783096
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99122, p-value = 0.3137
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.AREA.36.S.txt")
mdata <- read.table("KAU.AREA.68.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 184 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.3097
## - Box-Cox: 1.2604
## - Center+scale: 1.3529
## - Double Reversed Log_b(x+a): 1.5472
## - Exp(x): 1.6456
## - Log_b(x+a): 1.2917
## - orderNorm (ORQ): 1.5123
## - sqrt(x + a): 1.1914
## - Yeo-Johnson: 1.2219
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 184 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - mean (before standardization) = 0.6686603
## - sd (before standardization) = 0.1189378
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99418, p-value = 0.6872
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.AREA.68.C.txt")
mdata <- read.table("KAU.AREA.75.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 179 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.23
## - Box-Cox: 1.02
## - Center+scale: 1.2895
## - Double Reversed Log_b(x+a): 2.4291
## - Exp(x): 1.6168
## - Log_b(x+a): 0.9962
## - orderNorm (ORQ): 1.1961
## - sqrt(x + a): 1.1017
## - Yeo-Johnson: 1.0081
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 179 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = -0.3666267
## - sd (before standardization) = 0.1480625
MASS::truehist(sqrt(mdata$V3), nbins = 12)

shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99093, p-value = 0.319
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.AREA.75.C.txt")
MRENDVI
mdata <- read.table("KAU.MRENDVI.9.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 96 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1622
## - Box-Cox: 1.1764
## - Center+scale: 1.0316
## - Double Reversed Log_b(x+a): 1.0176
## - Exp(x): 1.2098
## - Log_b(x+a): 1.6156
## - orderNorm (ORQ): 1.3413
## - sqrt(x + a): 1.2391
## - Yeo-Johnson: 1.1636
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 96 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 1.882206 ; min(x) = -0.07033806
## - mean (before standardization) = 0.2786437
## - sd (before standardization) = 0.1544091
trait <- boxcox(mdata$V3)
trait2 <- predict(trait)
MASS::truehist(trait2, nbins = 12)

shapiro.test(trait2)
##
## Shapiro-Wilk normality test
##
## data: trait2
## W = 0.98991, p-value = 0.6845
mdata$V3 <- sqrt(trait2)
## Warning in sqrt(trait2): NaNs produced
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "KAU.MRENDVI.9.S.txt")
mdata <- read.table("KAU.MRENDVI.16.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 190 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2663
## - Box-Cox: 1.1558
## - Center+scale: 1.2442
## - Double Reversed Log_b(x+a): 1.0489
## - Exp(x): 1.2479
## - Log_b(x+a): 1.4137
## - orderNorm (ORQ): 1.27
## - sqrt(x + a): 1.3216
## - Yeo-Johnson: 1.1558
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 190 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 0.5353393 ; min(x) = 0.3061361
## - mean (before standardization) = 0.501834
## - sd (before standardization) = 0.157437
trait <- yeojohnson(mdata$V3)
trait2 <- predict(trait)
MASS::truehist(trait2, nbins = 12)

shapiro.test(trait2)
##
## Shapiro-Wilk normality test
##
## data: trait2
## W = 0.88519, p-value = 6.963e-11
mdata <- read.table("KAU.MRENDVI.16.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 189 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4219
## - Box-Cox: 1.3003
## - Center+scale: 1.3961
## - Double Reversed Log_b(x+a): 1.4598
## - Exp(x): 1.3333
## - Log_b(x+a): 1.5996
## - orderNorm (ORQ): 1.6458
## - sqrt(x + a): 1.4411
## - Yeo-Johnson: 1.323
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 189 nonmissing obs.:
## Estimated statistics:
## - lambda = 1.999958
## - mean (before standardization) = -0.4093739
## - sd (before standardization) = 0.01367975
trait <- boxcox(mdata$V3)
trait2 <- predict(trait)
MASS::truehist(trait2, nbins = 12)

shapiro.test(trait2)
##
## Shapiro-Wilk normality test
##
## data: trait2
## W = 0.9859, p-value = 0.05552
mdata$V3 <- trait2
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.MRENDVI.16.S.txt")
mdata <- read.table("KAU.MRENDVI.30.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 189 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4053
## - Box-Cox: 1.313
## - Center+scale: 1.3943
## - Double Reversed Log_b(x+a): 1.3726
## - Exp(x): 1.3652
## - Log_b(x+a): 1.4786
## - orderNorm (ORQ): 1.33
## - sqrt(x + a): 1.4702
## - Yeo-Johnson: 1.287
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 189 nonmissing obs.:
## Estimated statistics:
## - lambda = -4.99994
## - mean (before standardization) = 0.1739921
## - sd (before standardization) = 0.003114791
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.95194, p-value = 5.248e-06
mdata <- read.table("KAU.MRENDVI.30.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 185 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2372
## - Box-Cox: 1.185
## - Center+scale: 1.2593
## - Double Reversed Log_b(x+a): 1.3199
## - Exp(x): 1.2077
## - Log_b(x+a): 1.3189
## - orderNorm (ORQ): 1.3442
## - sqrt(x + a): 1.2722
## - Yeo-Johnson: 1.1768
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 185 nonmissing obs.:
## Estimated statistics:
## - lambda = -4.99994
## - mean (before standardization) = 0.1745987
## - sd (before standardization) = 0.002853297
trait <- boxcox(mdata$V3)
trait2 <- predict(trait)
MASS::truehist(trait2, nbins = 12)

shapiro.test(trait2)
##
## Shapiro-Wilk normality test
##
## data: trait2
## W = 0.991, p-value = 0.3014
mdata$V3 <- trait2
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.MRENDVI.30.S.txt")
mdata <- read.table("KAU.MRENDVI.36.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 188 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.6282
## - Box-Cox: 1.4551
## - Center+scale: 1.5832
## - Double Reversed Log_b(x+a): 1.251
## - Exp(x): 1.5529
## - Log_b(x+a): 1.8335
## - orderNorm (ORQ): 1.2279
## - sqrt(x + a): 1.7265
## - Yeo-Johnson: 1.4668
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 188 nonmissing obs and ties
## - 189 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 0.281 0.480 0.509 0.528 0.585
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.89742, p-value = 4.287e-10
mdata <- read.table("KAU.MRENDVI.36.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 187 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.6954
## - Box-Cox: 1.4801
## - Center+scale: 1.6649
## - Double Reversed Log_b(x+a): 1.3014
## - Exp(x): 1.6074
## - Log_b(x+a): 1.8047
## - orderNorm (ORQ): 1.4039
## - sqrt(x + a): 1.7468
## - Yeo-Johnson: 1.4361
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 187 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 0.600436 ; min(x) = 0.2187676
## - mean (before standardization) = 0.4987305
## - sd (before standardization) = 0.1455551
trait <- boxcox(mdata$V3)
trait2 <- predict(trait)
MASS::truehist(trait2, nbins = 12)

shapiro.test(trait2)
##
## Shapiro-Wilk normality test
##
## data: trait2
## W = 0.97807, p-value = 0.004877
mdata <- read.table("KAU.MRENDVI.68.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 184 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.7661
## - Box-Cox: 1.439
## - Center+scale: 1.6693
## - Double Reversed Log_b(x+a): 1.2481
## - Exp(x): 1.5418
## - Log_b(x+a): 2.3511
## - orderNorm (ORQ): 1.43
## - sqrt(x + a): 1.9769
## - Yeo-Johnson: 1.325
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 184 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 0.6284347 ; min(x) = 0.1638
## - mean (before standardization) = 0.4486253
## - sd (before standardization) = 0.1972762
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.93713, p-value = 3.476e-07
mdata <- read.table("KAU.MRENDVI.68.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 185 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2092
## - Box-Cox: 1.0589
## - Center+scale: 1.1437
## - Double Reversed Log_b(x+a): 1.3508
## - Exp(x): 1.0814
## - Log_b(x+a): 1.4679
## - orderNorm (ORQ): 1.1688
## - sqrt(x + a): 1.1803
## - Yeo-Johnson: 1.0886
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 185 nonmissing obs.:
## Estimated statistics:
## - lambda = 1.712865
## - mean (before standardization) = -0.4898615
## - sd (before standardization) = 0.02945206
trait <- mdata$V3
trait2 <- yeojohnson(trait)
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.97702, p-value = 0.003814
mdata <- read.table("KAU.MRENDVI.75.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 179 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.3631
## - Box-Cox: 1.2408
## - Center+scale: 1.3048
## - Double Reversed Log_b(x+a): 1.2813
## - Exp(x): 1.2918
## - Log_b(x+a): 1.806
## - orderNorm (ORQ): 1.2046
## - sqrt(x + a): 1.5503
## - Yeo-Johnson: 1.198
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 179 nonmissing obs.:
## Estimated statistics:
## - lambda = -4.99994
## - mean (before standardization) = 0.1602267
## - sd (before standardization) = 0.01161967
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.96053, p-value = 6.256e-05
PRI
mdata <- read.table("KAU.PRI.16.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 190 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.48
## - Center+scale: 1.48
## - Double Reversed Log_b(x+a): 1.3695
## - Exp(x): 1.5168
## - Log_b(x+a): 1.8905
## - orderNorm (ORQ): 1.3805
## - sqrt(x + a): 1.6357
## - Yeo-Johnson: 1.5205
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 190 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = -0.00252848 ; min(x) = -0.07383932
## - mean (before standardization) = 0.4322043
## - sd (before standardization) = 0.1745917
trait <- asinh(mdata$V3)
MASS::truehist(trait, nbins = 12)

shapiro.test(trait)
##
## Shapiro-Wilk normality test
##
## data: trait
## W = 0.97788, p-value = 0.004178
mdata <- read.table("KAU.PRI.16.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 189 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1634
## - Center+scale: 1.1634
## - Double Reversed Log_b(x+a): 1.4434
## - Exp(x): 1.1781
## - Log_b(x+a): 1.5804
## - orderNorm (ORQ): 1.285
## - sqrt(x + a): 1.1978
## - Yeo-Johnson: 1.156
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 189 nonmissing obs.:
## Estimated statistics:
## - lambda = 4.99994
## - mean (before standardization) = -0.03442627
## - sd (before standardization) = 0.004887412
trait <- mdata$V3
trait2 <- yeojohnson(trait)
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.99705, p-value = 0.9769
mdata$V3 <- x2
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.PRI.16.S.txt")
mdata <- read.table("KAU.PRI.30.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 189 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4016
## - Center+scale: 1.4016
## - Double Reversed Log_b(x+a): 1.4121
## - Exp(x): 1.3537
## - Log_b(x+a): 1.6959
## - orderNorm (ORQ): 1.3192
## - sqrt(x + a): 1.5319
## - Yeo-Johnson: 1.3228
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 189 nonmissing obs and ties
## - 190 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## -0.062 -0.028 -0.023 -0.018 -0.004
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.95449, p-value = 9.276e-06
mdata <- read.table("KAU.PRI.30.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 185 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.0507
## - Center+scale: 1.0507
## - Double Reversed Log_b(x+a): 1.5663
## - Exp(x): 1.0728
## - Log_b(x+a): 1.5075
## - orderNorm (ORQ): 1.1954
## - sqrt(x + a): 1.0503
## - Yeo-Johnson: 1.1187
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 185 nonmissing obs.:
## Relevant statistics:
## - a = 0.05235165
## - mean (before standardization) = 0.1474897
## - sd (before standardization) = 0.0306786
shapiro.test(exp(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: exp(mdata$V3)
## W = 0.99533, p-value = 0.8378
mdata$V3 <- exp(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.PRI.30.S.txt")
mdata <- read.table("KAU.PRI.36.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 188 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.022
## - Center+scale: 1.022
## - Double Reversed Log_b(x+a): 1.1518
## - Exp(x): 1.0189
## - Log_b(x+a): 1.4897
## - orderNorm (ORQ): 1.1215
## - sqrt(x + a): 1.1237
## - Yeo-Johnson: 1.0011
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 188 nonmissing obs.:
## Estimated statistics:
## - lambda = 4.99994
## - mean (before standardization) = -0.03839941
## - sd (before standardization) = 0.007787223
shapiro.test(exp(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: exp(mdata$V3)
## W = 0.95895, p-value = 2.747e-05
mdata <- read.table("KAU.PRI.36.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 187 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.0243
## - Center+scale: 1.0243
## - Double Reversed Log_b(x+a): 1.0208
## - Exp(x): 1.0132
## - Log_b(x+a): 1.2442
## - orderNorm (ORQ): 1.1008
## - sqrt(x + a): 0.9708
## - Yeo-Johnson: 0.9991
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 187 nonmissing obs.:
## Relevant statistics:
## - a = 0.08599875
## - mean (before standardization) = 0.1974982
## - sd (before standardization) = 0.0255357
trait <- mdata$V3
trait2 <- yeojohnson(trait)
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.97585, p-value = 0.002515
mdata <- read.table("KAU.PRI.69.C.txt", fill = T)
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 184 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.3979
## - Center+scale: 1.3979
## - Double Reversed Log_b(x+a): 1.1594
## - Exp(x): 1.3979
## - Log_b(x+a): 2.3806
## - orderNorm (ORQ): 1.1144
## - sqrt(x + a): 1.8082
## - Yeo-Johnson: 1.2919
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 184 nonmissing obs and ties
## - 185 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## -0.122 -0.079 -0.064 -0.054 -0.033
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.68588, p-value < 2.2e-16
mdata <- read.table("KAU.PRI.75.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 179 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.5304
## - Center+scale: 1.5342
## - Double Reversed Log_b(x+a): 1.2323
## - Exp(x): 1.507
## - Log_b(x+a): 2.7956
## - orderNorm (ORQ): 1.2327
## - sqrt(x + a): 2.0618
## - Yeo-Johnson: 1.4009
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 179 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = -0.02814495 ; min(x) = -0.1267321
## - mean (before standardization) = 0.4091387
## - sd (before standardization) = 0.1711149
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.6885, p-value < 2.2e-16
mdata <- read.table("KAU.PRI.75.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1075
## - Center+scale: 1.1075
## - Double Reversed Log_b(x+a): 1.4067
## - Exp(x): 1.0869
## - Log_b(x+a): 1.7937
## - orderNorm (ORQ): 1.1722
## - sqrt(x + a): 1.3015
## - Yeo-Johnson: 1.0665
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 171 nonmissing obs.:
## Estimated statistics:
## - lambda = 4.99994
## - mean (before standardization) = -0.07442292
## - sd (before standardization) = 0.007287169
trait <- mdata$V3
trait2 <- yeojohnson(trait)
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.99054, p-value = 0.3171
mdata$V3 <- x2
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.PRI.75.S.txt")
WBI
mdata <- read.table("KAU.WBI.9.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 187 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 2.3322
## - Box-Cox: 2.1756
## - Center+scale: 2.2704
## - Double Reversed Log_b(x+a): 1.4895
## - Exp(x): 2.183
## - Log_b(x+a): 2.3733
## - orderNorm (ORQ): 1.2371
## - sqrt(x + a): 2.3322
## - Yeo-Johnson: 2.0937
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 187 nonmissing obs and ties
## - 188 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 0.915 1.004 1.011 1.019 1.059
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.73785, p-value < 2.2e-16
mdata <- read.table("KAU.WBI.9.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 180 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 2.4572
## - Box-Cox: 2.2472
## - Center+scale: 2.3639
## - Double Reversed Log_b(x+a): 1.4617
## - Exp(x): 2.255
## - Log_b(x+a): 2.5739
## - orderNorm (ORQ): 1.0028
## - sqrt(x + a): 2.5
## - Yeo-Johnson: 2.1267
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 180 nonmissing obs and ties
## - 181 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 0.864 0.968 0.980 0.989 1.016
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.75297, p-value = 4.3e-16
mdata <- read.table("KAU.WBI.16.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 190 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4026
## - Box-Cox: 1.4284
## - Center+scale: 1.3732
## - Double Reversed Log_b(x+a): 1.1892
## - Exp(x): 1.3732
## - Log_b(x+a): 1.3953
## - orderNorm (ORQ): 1.2442
## - sqrt(x + a): 1.4026
## - Yeo-Johnson: 1.4505
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 190 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 1.104949 ; min(x) = 1.00036
## - mean (before standardization) = 0.2380877
## - sd (before standardization) = 0.09837224
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.96142, p-value = 4.534e-05
mdata <- read.table("KAU.WBI.16.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 189 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 9.9132
## - Box-Cox: 9.9132
## - Center+scale: 9.9132
## - Double Reversed Log_b(x+a): 8.5197
## - Exp(x): 9.9132
## - Log_b(x+a): 9.9132
## - orderNorm (ORQ): 6.8502
## - sqrt(x + a): 9.9132
## - Yeo-Johnson: 9.9132
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 189 nonmissing obs and ties
## - 16 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 1.032 1.032 1.032 1.032 1.032
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.40837, p-value < 2.2e-16
mdata <- read.table("KAU.WBI.30.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 189 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 8.3681
## - Box-Cox: 8.3681
## - Center+scale: 8.3681
## - Double Reversed Log_b(x+a): 5.259
## - Exp(x): 8.3681
## - Log_b(x+a): 8.3681
## - orderNorm (ORQ): 5.2158
## - sqrt(x + a): 8.3681
## - Yeo-Johnson: 8.3681
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 189 nonmissing obs and ties
## - 10 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 0.997 0.997 0.997 0.997 0.997
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.38774, p-value < 2.2e-16
mdata <- read.table("KAU.WBI.30.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 185 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 7.0797
## - Box-Cox: 7.0797
## - Center+scale: 7.0797
## - Double Reversed Log_b(x+a): 4.2654
## - Exp(x): 7.0797
## - Log_b(x+a): 7.0797
## - orderNorm (ORQ): 3.0263
## - sqrt(x + a): 7.0797
## - Yeo-Johnson: 7.0797
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 185 nonmissing obs and ties
## - 19 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 1.021 1.021 1.021 1.021 1.021
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.45538, p-value < 2.2e-16
mdata <- read.table("KAU.WBI.36.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 188 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.0525
## - Box-Cox: 1.0893
## - Center+scale: 1.0746
## - Double Reversed Log_b(x+a): 1.258
## - Exp(x): 1.0893
## - Log_b(x+a): 1.0341
## - orderNorm (ORQ): 1.1331
## - sqrt(x + a): 1.0525
## - Yeo-Johnson: 1.0525
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 188 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = 0.02196259
## - sd (before standardization) = 0.005604793
trait <- yeojohnson(mdata$V3)
trait2 <- predict(trait)
MASS::truehist(trait2, nbins = 12)

shapiro.test(trait2)
##
## Shapiro-Wilk normality test
##
## data: trait2
## W = 0.97256, p-value = 0.0009385
mdata <- read.table("KAU.WBI.36.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 187 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4164
## - Box-Cox: 1.3716
## - Center+scale: 1.3906
## - Double Reversed Log_b(x+a): 1.1358
## - Exp(x): 1.3755
## - Log_b(x+a): 1.451
## - orderNorm (ORQ): 1.2869
## - sqrt(x + a): 1.4164
## - Yeo-Johnson: 1.3755
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 187 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 1.059804 ; min(x) = 1.004875
## - mean (before standardization) = 0.4081525
## - sd (before standardization) = 0.1549528
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.95893, p-value = 2.875e-05
mdata <- read.table("KAU.WBI.68.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 184 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.6429
## - Box-Cox: 1.5549
## - Center+scale: 1.6472
## - Double Reversed Log_b(x+a): 1.2448
## - Exp(x): 1.5627
## - Log_b(x+a): 1.6617
## - orderNorm (ORQ): 1.3189
## - sqrt(x + a): 1.6429
## - Yeo-Johnson: 1.4828
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 184 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 1.113899 ; min(x) = 0.9593143
## - mean (before standardization) = 0.4161042
## - sd (before standardization) = 0.1717343
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.93533, p-value = 2.484e-07
mdata <- read.table("KAU.WBI.68.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 185 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.0125
## - Box-Cox: 1.0399
## - Center+scale: 1.0022
## - Double Reversed Log_b(x+a): 1.2527
## - Exp(x): 1.0477
## - Log_b(x+a): 1.0198
## - orderNorm (ORQ): 1.1832
## - sqrt(x + a): 1.0125
## - Yeo-Johnson: 1.0223
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## center_scale(x) Transformation with 185 nonmissing obs.
## Estimated statistics:
## - mean (before standardization) = 1.02529
## - sd (before standardization) = 0.0219166
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.98576, p-value = 0.05808
mdata$V3 <- predict(log_x(mdata$V3, b=10))
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.WBI.68.S.txt")
mdata <- read.table("KAU.WBI.75.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 179 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2565
## - Box-Cox: 1.2986
## - Center+scale: 1.2799
## - Double Reversed Log_b(x+a): 1.0959
## - Exp(x): 1.3064
## - Log_b(x+a): 1.2915
## - orderNorm (ORQ): 1.254
## - sqrt(x + a): 1.2565
## - Yeo-Johnson: 1.33
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized double reversed Log_b(x + a) Transformation with 179 nonmissing obs.:
## Relevant statistics:
## - a =
## - b = 10
## - max(x) = 1.132342 ; min(x) = 0.9793274
## - mean (before standardization) = 0.4150691
## - sd (before standardization) = 0.178979
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.95537, p-value = 1.916e-05
mdata <- read.table("KAU.WBI.75.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.0672
## - Box-Cox: 1.0594
## - Center+scale: 1.0713
## - Double Reversed Log_b(x+a): 1.8443
## - Exp(x): 1.0754
## - Log_b(x+a): 1.0633
## - orderNorm (ORQ): 1.2621
## - sqrt(x + a): 1.0672
## - Yeo-Johnson: 1.0395
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 171 nonmissing obs.:
## Estimated statistics:
## - lambda = -4.99994
## - mean (before standardization) = 0.1944403
## - sd (before standardization) = 0.0002981089
shapiro.test(predict(log_x(mdata$V3, b=10)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3, b = 10))
## W = 0.99212, p-value = 0.4768
mdata$V3 <- predict(log_x(mdata$V3, b=10))
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.WBI.75.S.txt")
KAU END MEASUREMENTS
mdata <- read.table("KAU.HI.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 157 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 0.9763
## - Box-Cox: 1.0142
## - Center+scale: 0.9428
## - Double Reversed Log_b(x+a): 1.4943
## - Exp(x): 0.9768
## - Log_b(x+a): 1.2643
## - orderNorm (ORQ): 1.2365
## - sqrt(x + a): 1.0492
## - Yeo-Johnson: 1.023
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## center_scale(x) Transformation with 157 nonmissing obs.
## Estimated statistics:
## - mean (before standardization) = 0.2721069
## - sd (before standardization) = 0.09873955
shapiro.test(predict(center_scale(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(center_scale(mdata$V3))
## W = 0.97962, p-value = 0.02012
mdata <- read.table("KAU.HI.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 167 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4636
## - Box-Cox: 1.1409
## - Center+scale: 1.4801
## - Double Reversed Log_b(x+a): 2.325
## - Exp(x): 1.5094
## - Log_b(x+a): 1.0881
## - orderNorm (ORQ): 1.1229
## - sqrt(x + a): 1.2271
## - Yeo-Johnson: 1.2992
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Log_b(x + a) Transformation with 167 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - b = 10
## - mean (before standardization) = -0.8882112
## - sd (before standardization) = 0.2170759
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.94495, p-value = 4.409e-06
mdata <- read.table("KAU.IFM.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 143 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 2.5575
## - Box-Cox: 1.38
## - Center+scale: 2.6992
## - Double Reversed Log_b(x+a): 3.4254
## - Exp(x): 3.0836
## - Log_b(x+a): 1.9693
## - orderNorm (ORQ): 1.0909
## - sqrt(x + a): 2.4101
## - Yeo-Johnson: 1.4829
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 143 nonmissing obs and ties
## - 143 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 0.225 0.313 0.337 0.373 0.951
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.61285, p-value < 2.2e-16
mdata <- read.table("KAU.IFM.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 136 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.6346
## - Box-Cox: 1.1695
## - Center+scale: 1.6522
## - Double Reversed Log_b(x+a): 2.7774
## - Exp(x): 1.8552
## - Log_b(x+a): 1.2161
## - orderNorm (ORQ): 1.4636
## - sqrt(x + a): 1.4702
## - Yeo-Johnson: 1.3515
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 136 nonmissing obs.:
## Estimated statistics:
## - lambda = -0.9999576
## - mean (before standardization) = -3.045591
## - sd (before standardization) = 0.5804935
shapiro.test(predict(boxcox(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(boxcox(mdata$V3))
## W = 0.98546, p-value = 0.1594
mdata$V3 <- predict(boxcox(mdata$V3))
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.IFM.S.txt")
mdata <- read.table("KAU.IFN.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 159 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.3859
## - Box-Cox: 1.3353
## - Center+scale: 1.6265
## - Double Reversed Log_b(x+a): 2.074
## - Log_b(x+a): 1.3859
## - orderNorm (ORQ): 1.3077
## - sqrt(x + a): 1.3738
## - Yeo-Johnson: 1.3353
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 159 nonmissing obs and ties
## - 160 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 100.360 314.542 431.958 566.532 1048.089
shapiro.test(predict(center_scale(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(center_scale(mdata$V3))
## W = 0.96328, p-value = 0.0003174
mdata <- read.table("KAU.IFN.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.406
## - Box-Cox: 1.3568
## - Center+scale: 2.2949
## - Double Reversed Log_b(x+a): 3.605
## - Exp(x): 7.1975
## - Log_b(x+a): 1.4019
## - orderNorm (ORQ): 1.2449
## - sqrt(x + a): 1.6505
## - Yeo-Johnson: 1.365
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 171 nonmissing obs and ties
## - 172 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 30.669 60.251 86.589 141.431 346.183
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.8853, p-value = 3.378e-10
mdata <- read.table("KAU.IFY.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 159 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2681
## - Box-Cox: 1.355
## - Center+scale: 1.4635
## - Double Reversed Log_b(x+a): 2.0671
## - Exp(x): 7.7781
## - Log_b(x+a): 1.2681
## - orderNorm (ORQ): 1.1959
## - sqrt(x + a): 1.3575
## - Yeo-Johnson: 1.3682
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 159 nonmissing obs and ties
## - 160 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 36.984 106.828 141.700 189.408 333.368
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.96695, p-value = 0.0007458
mdata <- read.table("KAU.IFY.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 2.1181
## - Box-Cox: 1.3724
## - Center+scale: 3.2358
## - Double Reversed Log_b(x+a): 3.6922
## - Exp(x): 7.5318
## - Log_b(x+a): 2.1099
## - orderNorm (ORQ): 1.0281
## - sqrt(x + a): 2.6102
## - Yeo-Johnson: 1.2051
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 171 nonmissing obs and ties
## - 171 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 20.457 23.339 27.538 36.905 119.162
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.75123, p-value = 1.019e-15
mdata <- read.table("KAU.MFM.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 147 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 2.2322
## - Box-Cox: 1.5034
## - Center+scale: 2.828
## - Double Reversed Log_b(x+a): 5.3198
## - Exp(x): 5.7072
## - Log_b(x+a): 1.7149
## - orderNorm (ORQ): 1.172
## - sqrt(x + a): 2.1358
## - Yeo-Johnson: 1.3728
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 147 nonmissing obs and ties
## - 148 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## 0.315 0.523 0.593 0.674 2.522
shapiro.test(predict(yeojohnson(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(yeojohnson(mdata$V3))
## W = 0.96071, p-value = 0.0003336
mdata <- read.table("KAU.MFM.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 147 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.4699
## - Box-Cox: 1.2996
## - Center+scale: 1.535
## - Double Reversed Log_b(x+a): 1.3395
## - Exp(x): 2.6863
## - Log_b(x+a): 1.345
## - orderNorm (ORQ): 1.2589
## - sqrt(x + a): 1.4634
## - Yeo-Johnson: 1.1712
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 147 nonmissing obs.:
## Estimated statistics:
## - lambda = -4.99994
## - mean (before standardization) = 0.1604411
## - sd (before standardization) = 0.01155271
shapiro.test(predict(boxcox(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(boxcox(mdata$V3))
## W = 0.97978, p-value = 0.02879
mdata <- read.table("KAU.MFN.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 160 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.075
## - Box-Cox: 1.0881
## - Center+scale: 1.67
## - Double Reversed Log_b(x+a): 2.231
## - Log_b(x+a): 1.075
## - orderNorm (ORQ): 1.3156
## - sqrt(x + a): 1.2806
## - Yeo-Johnson: 1.0881
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized asinh(x) Transformation with 160 nonmissing obs.:
## Relevant statistics:
## - mean (before standardization) = 6.272711
## - sd (before standardization) = 0.4521011
shapiro.test(predict(boxcox(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(boxcox(mdata$V3))
## W = 0.99523, p-value = 0.8875
mdata$V3 <- predict(boxcox(mdata$V3))
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.MFN.C.txt")
mdata <- read.table("KAU.MFN.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2829
## - Box-Cox: 1.1871
## - Center+scale: 2.1339
## - Double Reversed Log_b(x+a): 3.3886
## - Exp(x): 11.866
## - Log_b(x+a): 1.2829
## - orderNorm (ORQ): 1.1914
## - sqrt(x + a): 1.5119
## - Yeo-Johnson: 1.1994
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 171 nonmissing obs.:
## Estimated statistics:
## - lambda = -0.8873626
## - mean (before standardization) = 1.107045
## - sd (before standardization) = 0.004606803
trait <- mdata$V3
trait <- unlist(trait)
trait2 <- orderNorm(trait)
## Warning in orderNorm(trait): Ties in data, Normal distribution not guaranteed
p <- predict(trait2)
x2 <- predict(trait2, newdata = p, inverse = TRUE)
MASS::truehist(x2, nbins = 12)

shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.88633, p-value = 3.845e-10
mdata <- read.table("KAU.MFY.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 160 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.6219
## - Center+scale: 1.5431
## - Double Reversed Log_b(x+a): 2.4048
## - Exp(x): 4
## - Log_b(x+a): 1.1497
## - orderNorm (ORQ): 1.1275
## - sqrt(x + a): 1.2511
## - Yeo-Johnson: 1.4163
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## orderNorm Transformation with 160 nonmissing obs and ties
## - 161 unique values
## - Original quantiles:
## 0% 25% 50% 75% 100%
## -5.501 116.783 159.486 237.128 566.579
shapiro.test(predict(log_x(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(log_x(mdata$V3))
## W = 0.4744, p-value < 2.2e-16
mdata <- read.table("KAU.MYF.S.txt", fill = T)
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.2102
## - Box-Cox: 1.0624
## - Center+scale: 2.1357
## - Double Reversed Log_b(x+a): 2.6898
## - Exp(x): 17.4643
## - Log_b(x+a): 1.2102
## - orderNorm (ORQ): 1.1383
## - sqrt(x + a): 1.3891
## - Yeo-Johnson: 1.0466
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Yeo-Johnson Transformation with 171 nonmissing obs.:
## Estimated statistics:
## - lambda = -4.99994
## - mean (before standardization) = 0.2000024
## - sd (before standardization) = 1.526669e-08
shapiro.test(asinh(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: asinh(mdata$V3)
## W = 0.97943, p-value = 0.01224
mdata <- read.table("KAU.TYM.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 160 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.7706
## - Center+scale: 1.1975
## - Double Reversed Log_b(x+a): 1.9325
## - Log_b(x+a): 1.1608
## - orderNorm (ORQ): 1.2894
## - sqrt(x + a): 1.0835
## - Yeo-Johnson: 1.11
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 160 nonmissing obs.:
## Relevant statistics:
## - a = 4.010106
## - mean (before standardization) = 17.71457
## - sd (before standardization) = 4.476314
shapiro.test(sqrt(mdata$V3))
## Warning in sqrt(mdata$V3): NaNs produced
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.99479, p-value = 0.8474
mdata$V3 <- sqrt(mdata$V3)
## Warning in sqrt(mdata$V3): NaNs produced
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.TYM.C.txt")
mdata <- read.table("KAU.TYM.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1379
## - Box-Cox: 1.1324
## - Center+scale: 1.7942
## - Double Reversed Log_b(x+a): 2.4552
## - Exp(x): 13.2448
## - Log_b(x+a): 1.1379
## - orderNorm (ORQ): 1.2426
## - sqrt(x + a): 1.3435
## - Yeo-Johnson: 1.1324
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 171 nonmissing obs.:
## Estimated statistics:
## - lambda = -0.3263948
## - mean (before standardization) = 2.26126
## - sd (before standardization) = 0.1013365
shapiro.test(predict(boxcox(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(boxcox(mdata$V3))
## W = 0.98563, p-value = 0.07627
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.TYM.S.txt")
mdata <- read.table("KAU.TYN.C.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 160 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.3288
## - Box-Cox: 1.3025
## - Center+scale: 1.3069
## - Double Reversed Log_b(x+a): 1.7794
## - Log_b(x+a): 1.3288
## - orderNorm (ORQ): 1.3375
## - sqrt(x + a): 1.25
## - Yeo-Johnson: 1.3025
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 160 nonmissing obs.:
## Relevant statistics:
## - a = 0
## - mean (before standardization) = 26.69154
## - sd (before standardization) = 5.637306
shapiro.test(sqrt(mdata$V3))
##
## Shapiro-Wilk normality test
##
## data: sqrt(mdata$V3)
## W = 0.9876, p-value = 0.1684
mdata$V3 <- sqrt(mdata$V3)
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.TYN.C.txt")
mdata <- read.table("KAU.TYN.S.txt")
MASS::truehist(mdata$V3, nbins = 12)

bestNormalize(mdata$V3)
## Best Normalizing transformation with 171 Observations
## Estimated Normality Statistics (Pearson P / df, lower => more normal):
## - arcsinh(x): 1.1983
## - Box-Cox: 1.252
## - Center+scale: 1.759
## - Double Reversed Log_b(x+a): 3.0963
## - Exp(x): 4.275
## - Log_b(x+a): 1.1983
## - orderNorm (ORQ): 1.3826
## - sqrt(x + a): 1.3275
## - Yeo-Johnson: 1.2479
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##
## Based off these, bestNormalize chose:
## Standardized asinh(x) Transformation with 171 nonmissing obs.:
## Relevant statistics:
## - mean (before standardization) = 5.88078
## - sd (before standardization) = 0.3841461
shapiro.test(predict(boxcox(mdata$V3)))
##
## Shapiro-Wilk normality test
##
## data: predict(boxcox(mdata$V3))
## W = 0.98537, p-value = 0.07063
write.table(mdata, row.names = F, col.names = F, quote = F, sep = '\t', file = "transf.KAU.TYN.S.txt")