fires <- read_excel("myData.xlsx")
Year, Number_Fires, Acres_Burned, DAMAGE_Costs, Damage_Costs_Per_Acre, and Avergae_Acres_Burned_Per_Fire
Divide it using dplyr::select in a way the two have a common variable, which you could use to join the two.
dplyr::select(fires, SEVERITY, NUMBER_FIRES, DAMAGE_COSTS)
## # A tibble: 83 × 3
## SEVERITY NUMBER_FIRES DAMAGE_COSTS
## <chr> <dbl> <dbl>
## 1 Moderate 1994 318636
## 2 Severe 2338 563710
## 3 Moderate 1447 165543
## 4 Severe 3805 1877147
## 5 Mild 2907 151584
## 6 Moderate 4150 404225
## 7 Severe 2491 847579
## 8 Moderate 4497 272178
## 9 Moderate 5460 515737
## 10 Moderate 5236 1484864
## # ℹ 73 more rows
fire_stats <- dplyr::select(fires, SEVERITY, NUMBER_FIRES, DAMAGE_COSTS)
Use tidyr::left_join or other joining functions.
left_join(fires, fire_stats)
## Joining with `by = join_by(NUMBER_FIRES, DAMAGE_COSTS, SEVERITY)`
## # A tibble: 83 × 7
## YEAR NUMBER_FIRES ACRES_BURNED DAMAGE_COSTS SEVERITY Damage_Cost_Per_Acre
## <chr> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 1933 1994 129210 318636 Moderate 2.47
## 2 1934 2338 363052 563710 Severe 1.55
## 3 1935 1447 127262 165543 Moderate 1.30
## 4 1936 3805 756696 1877147 Severe 2.48
## 5 1937 2907 71312 151584 Mild 2.13
## 6 1938 4150 221061 404225 Moderate 1.83
## 7 1939 2491 513620 847579 Severe 1.65
## 8 1940 4497 156015 272178 Moderate 1.74
## 9 1941 5460 278599 515737 Moderate 1.85
## 10 1942 5236 573597 1484864 Moderate 2.59
## # ℹ 73 more rows
## # ℹ 1 more variable: Average_Acres_Burned_Per_Fire <dbl>