Import Data

members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl  (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl  (6): hired, success, solo, oxygen_used, died, injured
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean Data

skimr::skim(members)
Data summary
Name members
Number of rows 76519
Number of columns 21
_______________________
Column type frequency:
character 10
logical 6
numeric 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
expedition_id 0 1.00 9 9 0 10350 0
member_id 0 1.00 12 12 0 76518 0
peak_id 0 1.00 4 4 0 391 0
peak_name 15 1.00 4 25 0 390 0
season 0 1.00 6 7 0 5 0
sex 2 1.00 1 1 0 2 0
citizenship 10 1.00 2 23 0 212 0
expedition_role 21 1.00 4 25 0 524 0
death_cause 75413 0.01 3 27 0 12 0
injury_type 74807 0.02 3 27 0 11 0

Variable type: logical

skim_variable n_missing complete_rate mean count
hired 0 1 0.21 FAL: 60788, TRU: 15731
success 0 1 0.38 FAL: 47320, TRU: 29199
solo 0 1 0.00 FAL: 76398, TRU: 121
oxygen_used 0 1 0.24 FAL: 58286, TRU: 18233
died 0 1 0.01 FAL: 75413, TRU: 1106
injured 0 1 0.02 FAL: 74806, TRU: 1713

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1.00 2000.36 14.78 1905 1991 2004 2012 2019 ▁▁▁▃▇
age 3497 0.95 37.33 10.40 7 29 36 44 85 ▁▇▅▁▁
highpoint_metres 21833 0.71 7470.68 1040.06 3800 6700 7400 8400 8850 ▁▁▆▃▇
death_height_metres 75451 0.01 6592.85 1308.19 400 5800 6600 7550 8830 ▁▁▂▇▆
injury_height_metres 75510 0.01 7049.91 1214.24 400 6200 7100 8000 8880 ▁▁▂▇▇

Issues with data: - numeric variables - year, age, highpoint_metres, death_height_metres, injury_height_metres - zero variance variables - character variables - convert to numbers in recipes step - ID variable - expedition_id

factors_vec <- members %>% select(year, age, highpoint_metres, death_height_metres, injury_height_metres) %>% names()

data_clean <- members %>% 
    
    # Drop Variables
    select(-c(death_height_metres, injury_height_metres, death_cause, injury_type)) %>% 
    
    # Drop Observations with missing values
    drop_na() %>% 
    
    # Mutate Logical Variables
    mutate(died = case_when(died == "TRUE" ~ "died", died == "FALSE" ~ "no")) %>% 
    
    mutate(across(where(is.logical), factor))

Explore Data

data_clean %>% count(died)
## # A tibble: 2 × 2
##   died      n
##   <chr> <int>
## 1 died    744
## 2 no    51639
data_clean %>% 
    ggplot(aes(died)) + 
    geom_bar()

died vs. season

data_clean %>% 
    ggplot(aes(died, season)) + 
    geom_boxplot()

Correlation Plot

# Step 1: Binarize
data_binarized <- data_clean %>% 
    select(-expedition_id, -highpoint_metres, -age, -expedition_role, -peak_name, -citizenship, -sex) %>% 
    binarize()

data_binarized %>% glimpse()
## Rows: 52,383
## Columns: 35
## $ `member_id__ACHN15301-01` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `member_id__-OTHER`       <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ peak_id__AMAD             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ peak_id__ANN1             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__BARU             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__CHOY             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__DHA1             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__EVER             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__HIML             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__KANG             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__LHOT             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__MAKA             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__MANA             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_id__PUMO             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `peak_id__-OTHER`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `year__-Inf_1997`         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ year__1997_2007           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ year__2007_2012           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ year__2012_Inf            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ season__Autumn            <dbl> 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ season__Spring            <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ season__Winter            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `season__-OTHER`          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ hired__FALSE              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,…
## $ hired__TRUE               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
## $ success__FALSE            <dbl> 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ success__TRUE             <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ solo__FALSE               <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ `solo__-OTHER`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ oxygen_used__FALSE        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ oxygen_used__TRUE         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ died__died                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ died__no                  <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ injured__FALSE            <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ injured__TRUE             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# Step 2: Correlation
data_correlation <- data_binarized %>% 
    correlate(died__died)
## Warning: correlate(): [Data Imbalance Detected] Consider sampling to balance the classes more than 5%
##   Column with imbalance: died__died
data_correlation
## # A tibble: 35 × 3
##    feature bin       correlation
##    <fct>   <chr>           <dbl>
##  1 died    died           1     
##  2 died    no            -1     
##  3 year    -Inf_1997      0.0843
##  4 success FALSE          0.0562
##  5 success TRUE          -0.0562
##  6 peak_id ANN1           0.0431
##  7 year    2012_Inf      -0.0330
##  8 peak_id AMAD          -0.0323
##  9 peak_id DHA1           0.0315
## 10 hired   FALSE          0.0305
## # ℹ 25 more rows
# Step 3: Plot
data_correlation %>% 
    correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 13 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Model Building

Split Data

set.seed(1234)
data_clean <- data_clean %>% sample_n(100)

data_split <- initial_split(data_clean, strata = died)
data_train <- training(data_split)
data_test <- testing(data_split)

data_cv <- rsample::vfold_cv(data_train, strata = died)
data_cv
## #  10-fold cross-validation using stratification 
## # A tibble: 10 × 2
##    splits         id    
##    <list>         <chr> 
##  1 <split [67/8]> Fold01
##  2 <split [67/8]> Fold02
##  3 <split [67/8]> Fold03
##  4 <split [67/8]> Fold04
##  5 <split [67/8]> Fold05
##  6 <split [68/7]> Fold06
##  7 <split [68/7]> Fold07
##  8 <split [68/7]> Fold08
##  9 <split [68/7]> Fold09
## 10 <split [68/7]> Fold10

Preprocess Data

library(themis)
## Warning: package 'themis' was built under R version 4.2.3
library(caret)
## Warning: package 'caret' was built under R version 4.2.3
## Loading required package: lattice
## 
## Attaching package: 'caret'
## The following objects are masked from 'package:yardstick':
## 
##     precision, recall, sensitivity, specificity
## The following object is masked from 'package:purrr':
## 
##     lift
library(lattice)
library(xgboost)

xgboost_rec <- recipes::recipe(died ~., data = data_train) %>% 
    update_role(peak_id, new_role = "ID") %>% 
    step_dummy(all_nominal_predictors()) # %>% 
    # step_smote(died)

xgboost_rec %>% prep() %>% juice() %>% glimpse()
## Rows: 75
## Columns: 209
## $ peak_id                       <fct> HIML, MANA, CHOY, EVER, BARU, CHOY, CHOY…
## $ year                          <dbl> 2013, 2014, 2010, 2010, 2000, 1991, 1995…
## $ age                           <dbl> 36, 50, 27, 34, 37, 50, 36, 36, 33, 45, …
## $ highpoint_metres              <dbl> 6200, 8163, 7150, 8800, 7152, 8188, 8188…
## $ died                          <fct> no, no, no, no, no, no, no, no, no, no, …
## $ expedition_id_AMAD13331       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0…
## $ expedition_id_AMAD18312       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_AMAD18319       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0…
## $ expedition_id_AMAD97310       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_ANN116103       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_ANN378301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_ANNS64301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_BARU00301       <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_BARU09304       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_BARU10308       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_BARU12309       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_BARU94306       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_BHRS10102       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY04305       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY04331       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
## $ expedition_id_CHOY05316       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY07349       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY10330       <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY14111       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY14307       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY16319       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY18313       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
## $ expedition_id_CHOY90301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY91302       <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY93105       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_CHOY95305       <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_DORJ04301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER02120       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ expedition_id_EVER03157       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER04151       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER05108       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER05113       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER05119       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER08129       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER10102       <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER10119       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER11103       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER11113       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER12132       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER12140       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER12168       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER12173       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER13111       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER13117       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER13138       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER14164       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER17104       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER18116       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER18175       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER19117       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER53101       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER73101       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER80401       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_EVER85102       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_GHUS18301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_GHYM53301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_HIML13306       <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_KANG00102       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_LHOT03109       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_LHOT19117       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_LHOT90301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_LOBE84303       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_MAKA14122       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_MANA10306       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
## $ expedition_id_MANA10315       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_MANA11315       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_MANA14311       <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_MANA17313       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_MANA99303       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_PUTH11302       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_RIPI05101       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_SARI09102       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_TILI00301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_id_TUKU16301       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_AMAD13331.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0…
## $ member_id_AMAD18312.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_AMAD18319.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0…
## $ member_id_AMAD97310.16        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_ANN116103.14        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_ANN378301.09        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_ANNS64301.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_BARU00301.04        <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_BARU09304.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_BARU10308.07        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_BARU12309.06        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_BARU94306.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_BHRS10102.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY04305.11        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY04331.08        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
## $ member_id_CHOY05316.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY07349.16        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY10330.21        <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY14111.04        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY14307.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY16319.03        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY18313.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
## $ member_id_CHOY90301.04        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY91302.02        <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY93105.07        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_CHOY95305.01        <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_DORJ04301.04        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER02120.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ member_id_EVER03157.06        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER04151.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER05108.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER05113.23        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER05119.03        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER08129.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER10102.15        <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER10119.06        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER11103.21        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER11113.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER12132.07        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER12140.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER12168.07        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER12173.07        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER13111.36        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER13117.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER13138.16        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER14164.03        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER17104.30        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER18116.26        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER18175.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER19117.39        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER53101.16        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER73101.63        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER80401.07        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_EVER85102.18        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_GHUS18301.10        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_GHYM53301.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_HIML13306.01        <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_KANG00102.06        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_LHOT03109.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_LHOT19117.15        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_LHOT90301.04        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_LOBE84303.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_MAKA14122.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_MANA10306.07        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
## $ member_id_MANA10315.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_MANA11315.12        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_MANA14311.06        <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_MANA17313.05        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_MANA99303.04        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_PUTH11302.04        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_RIPI05101.02        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_SARI09102.04        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_TILI00301.01        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ member_id_TUKU16301.17        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Annapurna.I         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Annapurna.III       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Annapurna.South     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Baruntse            <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Bhrikuti.Shail      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Cho.Oyu             <dbl> 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1…
## $ peak_name_Dorje.Lhakpa        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Everest             <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ peak_name_Ghustang.South      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Ghyuthumba.Main     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Himlung.Himal       <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Kangchenjunga       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Lhotse              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Lobuje.East         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Makalu              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Manaslu             <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
## $ peak_name_Putha.Hiunchuli     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Ripimo.Shar         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Saribung            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Tilicho             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Tukuche             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ season_Spring                 <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ season_Winter                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ sex_M                         <dbl> 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1…
## $ citizenship_Austria           <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ citizenship_Chile             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
## $ citizenship_China             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Finland           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_France            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Germany           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_India             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Italy             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Japan             <dbl> 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Mexico            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Nepal             <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
## $ citizenship_Netherlands       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_New.Zealand       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Norway            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Poland            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Russia            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_S.Korea           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Slovenia          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Spain             <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0…
## $ citizenship_Switzerland       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
## $ citizenship_UK                <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_USA               <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0…
## $ citizenship_USSR              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_role_Deputy.Leader <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_role_H.A.Assistant <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_role_H.A.Worker    <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
## $ expedition_role_Leader        <dbl> 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0…
## $ hired_TRUE.                   <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
## $ success_TRUE.                 <dbl> 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1…
## $ solo_TRUE.                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ oxygen_used_TRUE.             <dbl> 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
## $ injured_TRUE.                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…

Specify Model

library(usemodels)
## Warning: package 'usemodels' was built under R version 4.2.3
usemodels::use_xgboost(died ~., data = data_train)
## xgboost_recipe <- 
##   recipe(formula = died ~ ., data = data_train) %>% 
##   step_zv(all_predictors()) 
## 
## xgboost_spec <- 
##   boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), 
##     loss_reduction = tune(), sample_size = tune()) %>% 
##   set_mode("classification") %>% 
##   set_engine("xgboost") 
## 
## xgboost_workflow <- 
##   workflow() %>% 
##   add_recipe(xgboost_recipe) %>% 
##   add_model(xgboost_spec) 
## 
## set.seed(96152)
## xgboost_tune <-
##   tune_grid(xgboost_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
xgboost_spec <- 
  boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), 
    loss_reduction = tune(), sample_size = tune()) %>% 
  set_mode("classification") %>% 
  set_engine("xgboost") 

xgboost_workflow <- 
  workflow() %>% 
  add_recipe(xgboost_rec) %>% 
  add_model(xgboost_spec)

Tune Hyperparameters

doParallel::registerDoParallel()

set.seed(65743)
xgboost_tune <-
  tune_grid(xgboost_workflow, 
            resamples = data_cv, 
            grid = 5)
## Warning: All models failed. Run `show_notes(.Last.tune.result)` for more
## information.