OPM Report

library(tidyverse)
full_data_means_clpm <- full_data_means %>%  
  filter(agency != "XX") %>%
  group_by(subag, year) %>%
  summarize(
    mut = mean(mut, na.rm = TRUE),
    voice = mean(voice, na.rm = TRUE)
  ) %>%
  pivot_wider(
    names_from = c("year"),
    values_from = c("mut", "voice")
  )
## `summarise()` has grouped output by 'subag'. You can override using the `.groups` argument.

Build model

library(lavaan)
## Warning: package 'lavaan' was built under R version 4.3.1
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
model <- 
'
  voice_2011 ~ 1 + mut_2010 + voice_2010
  voice_2012 ~ 1 + mut_2011 + voice_2011
  voice_2013 ~ 1 + mut_2012 + voice_2012
  voice_2014 ~ 1 + mut_2013 + voice_2013
  voice_2015 ~ 1 + mut_2014 + voice_2014
  voice_2016 ~ 1 + mut_2015 + voice_2015
  voice_2017 ~ 1 + mut_2016 + voice_2016
  voice_2018 ~ 1 + mut_2017 + voice_2017
  voice_2019 ~ 1 + mut_2018 + voice_2018
  
  voice_2010 ~~ mut_2010
  voice_2011 ~~ mut_2011
  voice_2012 ~~ mut_2012
  voice_2013 ~~ mut_2013
  voice_2014 ~~ mut_2014
  voice_2015 ~~ mut_2015   
  voice_2016 ~~ mut_2016
  voice_2017 ~~ mut_2017
  voice_2018 ~~ mut_2018
  voice_2019 ~~ mut_2019
'

m1 <- sem(model, data = full_data_means_clpm, missing = "ML")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   527
summary(m1, standardized = TRUE)
## lavaan 0.6.17 ended normally after 364 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        68
## 
##                                                   Used       Total
##   Number of observations                           526         527
##   Number of missing patterns                        84            
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2506.204
##   Degrees of freedom                               162
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   voice_2011 ~                                                          
##     mut_2010         -0.526    0.044  -11.846    0.000   -0.526   -0.596
##     voice_2010        0.769    0.035   21.775    0.000    0.769    0.890
##   voice_2012 ~                                                          
##     mut_2011         -0.570    0.061   -9.301    0.000   -0.570   -0.656
##     voice_2011        0.791    0.051   15.391    0.000    0.791    0.812
##   voice_2013 ~                                                          
##     mut_2012         -0.509    0.074   -6.875    0.000   -0.509   -0.524
##     voice_2012        0.812    0.060   13.542    0.000    0.812    0.832
##   voice_2014 ~                                                          
##     mut_2013         -0.534    0.086   -6.214    0.000   -0.534   -0.619
##     voice_2013        1.023    0.064   16.111    0.000    1.023    1.117
##   voice_2015 ~                                                          
##     mut_2014         -0.697    0.051  -13.741    0.000   -0.697   -0.654
##     voice_2014        0.867    0.043   20.275    0.000    0.867    0.655
##   voice_2016 ~                                                          
##     mut_2015         -0.606    0.054  -11.292    0.000   -0.606   -0.638
##     voice_2015        0.805    0.041   19.631    0.000    0.805    0.881
##   voice_2017 ~                                                          
##     mut_2016         -0.722    0.073   -9.875    0.000   -0.722   -0.788
##     voice_2016        1.066    0.040   26.676    0.000    1.066    1.146
##   voice_2018 ~                                                          
##     mut_2017         -0.851    0.050  -17.025    0.000   -0.851   -0.790
##     voice_2017        1.076    0.035   30.668    0.000    1.076    0.876
##   voice_2019 ~                                                          
##     mut_2018         -0.157    0.036   -4.313    0.000   -0.157   -0.175
##     voice_2018        0.769    0.046   16.848    0.000    0.769    0.929
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   mut_2010 ~~                                                           
##     voice_2010        0.035    0.003   10.765    0.000    0.035    0.847
##  .voice_2011 ~~                                                         
##     mut_2011          0.028    0.003   10.351    0.000    0.028    0.918
##  .voice_2012 ~~                                                         
##     mut_2012          0.025    0.003    8.185    0.000    0.025    0.956
##  .voice_2013 ~~                                                         
##     mut_2013          0.025    0.003    7.348    0.000    0.025    0.947
##  .voice_2014 ~~                                                         
##     mut_2014          0.019    0.003    5.843    0.000    0.019    0.886
##  .voice_2015 ~~                                                         
##     mut_2015          0.032    0.005    6.636    0.000    0.032    0.972
##  .voice_2016 ~~                                                         
##     mut_2016          0.029    0.003    8.337    0.000    0.029    0.974
##  .voice_2017 ~~                                                         
##     mut_2017          0.024    0.003    7.609    0.000    0.024    0.939
##  .voice_2018 ~~                                                         
##     mut_2018          0.031    0.003    9.801    0.000    0.031    0.962
##  .voice_2019 ~~                                                         
##     mut_2019          0.018    0.003    6.433    0.000    0.018    0.765
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voice_2011        2.530    0.114   22.147    0.000    2.530   14.328
##    .voice_2012        2.540    0.160   15.840    0.000    2.540   14.763
##    .voice_2013        2.225    0.137   16.193    0.000    2.225   13.253
##    .voice_2014        1.549    0.192    8.080    0.000    1.549   10.072
##    .voice_2015        2.644    0.174   15.181    0.000    2.644   12.987
##    .voice_2016        2.651    0.145   18.308    0.000    2.651   14.254
##    .voice_2017        2.143    0.192   11.148    0.000    2.143   12.382
##    .voice_2018        2.507    0.139   18.080    0.000    2.507   11.800
##    .voice_2019        1.373    0.177    7.771    0.000    1.373    7.805
##     mut_2010          3.264    0.012  273.421    0.000    3.264   16.319
##     voice_2010        3.562    0.012  302.683    0.000    3.562   17.417
##     mut_2011          3.248    0.012  275.572    0.000    3.248   16.388
##     mut_2012          3.149    0.014  231.067    0.000    3.149   18.225
##     mut_2013          3.060    0.015  207.927    0.000    3.060   17.170
##     mut_2014          3.071    0.017  179.257    0.000    3.071   16.096
##     mut_2015          3.132    0.019  166.460    0.000    3.132   15.994
##     mut_2016          3.215    0.013  250.478    0.000    3.215   17.013
##     mut_2017          3.287    0.014  234.666    0.000    3.287   16.669
##     mut_2018          3.296    0.013  260.834    0.000    3.296   16.791
##     mut_2019          3.326    0.015  229.079    0.000    3.326   14.880
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voice_2011        0.023    0.003    9.180    0.000    0.023    0.751
##    .voice_2012        0.022    0.003    7.596    0.000    0.022    0.758
##    .voice_2013        0.021    0.003    6.710    0.000    0.021    0.759
##    .voice_2014        0.012    0.002    4.970    0.000    0.012    0.511
##    .voice_2015        0.028    0.005    5.727    0.000    0.028    0.686
##    .voice_2016        0.025    0.004    6.635    0.000    0.025    0.721
##    .voice_2017        0.017    0.003    5.622    0.000    0.017    0.559
##    .voice_2018        0.026    0.003    8.285    0.000    0.026    0.581
##    .voice_2019        0.011    0.002    6.103    0.000    0.011    0.346
##     mut_2010          0.040    0.003   11.810    0.000    0.040    1.000
##     voice_2010        0.042    0.004   11.842    0.000    0.042    1.000
##     mut_2011          0.039    0.003   11.937    0.000    0.039    1.000
##     mut_2012          0.030    0.003    8.772    0.000    0.030    1.000
##     mut_2013          0.032    0.004    8.118    0.000    0.032    1.000
##     mut_2014          0.036    0.005    7.262    0.000    0.036    1.000
##     mut_2015          0.038    0.005    7.296    0.000    0.038    1.000
##     mut_2016          0.036    0.004   10.079    0.000    0.036    1.000
##     mut_2017          0.039    0.004    9.519    0.000    0.039    1.000
##     mut_2018          0.039    0.004   10.959    0.000    0.039    1.000
##     mut_2019          0.050    0.005   10.886    0.000    0.050    1.000