# excel filer
games <- read_excel("../00_data/MyData_charts.xlsx")
games
## # A tibble: 988 × 15
## year country city stage home_team away_team home_score away_score outcome
## <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
## 1 1930 Uruguay Montev… Grou… France Mexico 4 1 H
## 2 1930 Uruguay Montev… Grou… Belgium United S… 0 3 A
## 3 1930 Uruguay Montev… Grou… Brazil Yugoslav… 1 2 A
## 4 1930 Uruguay Montev… Grou… Peru Romania 1 3 A
## 5 1930 Uruguay Montev… Grou… Argentina France 1 0 H
## 6 1930 Uruguay Montev… Grou… Chile Mexico 3 0 H
## 7 1930 Uruguay Montev… Grou… Bolivia Yugoslav… 0 4 A
## 8 1930 Uruguay Montev… Grou… Paraguay United S… 0 3 A
## 9 1930 Uruguay Montev… Grou… Uruguay Peru 1 0 H
## 10 1930 Uruguay Montev… Grou… Argentina Mexico 6 3 H
## # ℹ 978 more rows
## # ℹ 6 more variables: win_conditions <chr>, winning_team <chr>,
## # losing_team <chr>, date <dttm>, month <chr>, dayofweek <chr>
games1 <- na.omit(games[, c("year", "country", "city", "stage", "home_team", "away_team", "home_score", "away_score", "outcome", "winning_team", "losing_team", "date", "month", "dayofweek")])
games1
## # A tibble: 900 × 14
## year country city stage home_team away_team home_score away_score outcome
## <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
## 1 1930 Uruguay Montev… Grou… France Mexico 4 1 H
## 2 1930 Uruguay Montev… Grou… Belgium United S… 0 3 A
## 3 1930 Uruguay Montev… Grou… Brazil Yugoslav… 1 2 A
## 4 1930 Uruguay Montev… Grou… Peru Romania 1 3 A
## 5 1930 Uruguay Montev… Grou… Argentina France 1 0 H
## 6 1930 Uruguay Montev… Grou… Chile Mexico 3 0 H
## 7 1930 Uruguay Montev… Grou… Bolivia Yugoslav… 0 4 A
## 8 1930 Uruguay Montev… Grou… Paraguay United S… 0 3 A
## 9 1930 Uruguay Montev… Grou… Uruguay Peru 1 0 H
## 10 1930 Uruguay Montev… Grou… Argentina Mexico 6 3 H
## # ℹ 890 more rows
## # ℹ 5 more variables: winning_team <chr>, losing_team <chr>, date <dttm>,
## # month <chr>, dayofweek <chr>
Primary key: A tibble: 0 × 6 home_team
Divide it using dplyr::select in a way the two have a common variable, which you could use to join the two.
games1_1half <- games1 %>% select(year:away_score) %>% head(50)
games1_2half <- games1 %>% select(home_team:dayofweek) %>% head(50)
games1_1half
## # A tibble: 50 × 8
## year country city stage home_team away_team home_score away_score
## <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 1930 Uruguay Montevideo Group 1 France Mexico 4 1
## 2 1930 Uruguay Montevideo Group 4 Belgium United Stat… 0 3
## 3 1930 Uruguay Montevideo Group 2 Brazil Yugoslavia 1 2
## 4 1930 Uruguay Montevideo Group 3 Peru Romania 1 3
## 5 1930 Uruguay Montevideo Group 1 Argentina France 1 0
## 6 1930 Uruguay Montevideo Group 1 Chile Mexico 3 0
## 7 1930 Uruguay Montevideo Group 2 Bolivia Yugoslavia 0 4
## 8 1930 Uruguay Montevideo Group 4 Paraguay United Stat… 0 3
## 9 1930 Uruguay Montevideo Group 3 Uruguay Peru 1 0
## 10 1930 Uruguay Montevideo Group 1 Argentina Mexico 6 3
## # ℹ 40 more rows
games1_2half
## # A tibble: 50 × 10
## home_team away_team home_score away_score outcome winning_team losing_team
## <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 France Mexico 4 1 H France Mexico
## 2 Belgium United Stat… 0 3 A United Stat… Belgium
## 3 Brazil Yugoslavia 1 2 A Yugoslavia Brazil
## 4 Peru Romania 1 3 A Romania Peru
## 5 Argentina France 1 0 H Argentina France
## 6 Chile Mexico 3 0 H Chile Mexico
## 7 Bolivia Yugoslavia 0 4 A Yugoslavia Bolivia
## 8 Paraguay United Stat… 0 3 A United Stat… Paraguay
## 9 Uruguay Peru 1 0 H Uruguay Peru
## 10 Argentina Mexico 6 3 H Argentina Mexico
## # ℹ 40 more rows
## # ℹ 3 more variables: date <dttm>, month <chr>, dayofweek <chr>
Use tidyr::left_join or other joining functions.
games2 <- left_join(games1_1half, games1_2half)
## Joining with `by = join_by(home_team, away_team, home_score, away_score)`
games2
## # A tibble: 50 × 14
## year country city stage home_team away_team home_score away_score outcome
## <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
## 1 1930 Uruguay Montev… Grou… France Mexico 4 1 H
## 2 1930 Uruguay Montev… Grou… Belgium United S… 0 3 A
## 3 1930 Uruguay Montev… Grou… Brazil Yugoslav… 1 2 A
## 4 1930 Uruguay Montev… Grou… Peru Romania 1 3 A
## 5 1930 Uruguay Montev… Grou… Argentina France 1 0 H
## 6 1930 Uruguay Montev… Grou… Chile Mexico 3 0 H
## 7 1930 Uruguay Montev… Grou… Bolivia Yugoslav… 0 4 A
## 8 1930 Uruguay Montev… Grou… Paraguay United S… 0 3 A
## 9 1930 Uruguay Montev… Grou… Uruguay Peru 1 0 H
## 10 1930 Uruguay Montev… Grou… Argentina Mexico 6 3 H
## # ℹ 40 more rows
## # ℹ 5 more variables: winning_team <chr>, losing_team <chr>, date <dttm>,
## # month <chr>, dayofweek <chr>