Learn R: t-tests

Load Packages

if (!require(haven)){
  install.packages("haven", dependencies = TRUE)
  require(haven)
}
Loading required package: haven
if (!require(tidyverse)){
  install.packages("tidyverse", dependencies = TRUE)
  require(tidyvesre)
}
Loading required package: tidyverse
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.4.4     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Import Data

dataset <- read_sav("Harry Potter Data t-tests.sav")

T-Test

t.test(formula = FFM_1 ~ CoinFlip,
       data = dataset,
       var.equal = FALSE)

    Welch Two Sample t-test

data:  FFM_1 by CoinFlip
t = -2.419, df = 76.753, p-value = 0.01793
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:
 -1.0412385 -0.1009527
sample estimates:
mean in group 1 mean in group 2 
       3.307692        3.878788