title: “RStat2101: Active Learning” subtitle: “Task I - Version III” author: - Name:ZAINAB ALSINANI - ID:126589 - Section:40 date: “2024-03-23” output: html_document —

YAML Header

Question 1. [1 point] Edit the header of the document by stating your name, ID and section. 126589_Stat2101_AL1.html

Reading Dataset

Question 2. [2 points] Read the dataset `AL_S2101_Grade.csv’ and assign it to an object called s2101_grade.

s2101_grade<-read.csv("AL_S2101_Grade.csv")
s2101_grade
##     College Gender Section Total Grade
## 1       SCI Female      10    98     A
## 2       SCI Female      10    97     A
## 3       EDU Female      40    96     A
## 4       EDU Female      40    96     A
## 5       SCI Female      50    95     A
## 6       SCI Female      40    94     A
## 7       EDU Female      70    94     A
## 8       SCI Female      20    93     A
## 9       SCI Female      40    93     A
## 10      EDU Female      10    93     A
## 11      EDU Female      20    92     A
## 12      MED Female      50    92     A
## 13      SCI Female      20    91     A
## 14      SCI Female      40    91     A
## 15      EDU Female      40    91     A
## 16      EDU Female      10    90     A
## 17      SCI Female      30    90     A
## 18      SCI   Male      30    90     A
## 19      SCI Female      10    90     A
## 20      SCI Female      50    90     A
## 21      SCI Female      70    90     A
## 22      EDU Female      80    90     A
## 23      SCI   Male      30    89    A-
## 24      EDU Female      50    89    A-
## 25      EDU Female      80    89    A-
## 26      MED Female      80    89    A-
## 27      EDU Female      20    88    A-
## 28      SCI Female      20    88    A-
## 29      SCI Female      60    88    A-
## 30      SCI Female      70    88    A-
## 31      SCI   Male      80    88    A-
## 32      SCI Female      80    88    A-
## 33      SCI   Male      10    87    A-
## 34      SCI   Male      10    87    A-
## 35      SCI   Male      10    87    A-
## 36      SCI Female      10    87    A-
## 37      SCI Female      60    87    A-
## 38      SCI   Male      60    86    A-
## 39      SCI Female      10    85    A-
## 40      SCI Female      10    85    A-
## 41      SCI Female      30    85    A-
## 42      SCI Female      40    85    A-
## 43      EDU Female      70    85    A-
## 44      EDU Female      70    85    A-
## 45      SCI   Male      80    85    A-
## 46      SCI Female      20    84    B+
## 47      SCI   Male      20    84    B+
## 48      SCI Female      20    84    B+
## 49      SCI Female      50    84    B+
## 50      EDU Female      80    84    B+
## 51      SCI Female      10    83    B+
## 52      SCI Female      10    83    B+
## 53      SCI Female      10    83    B+
## 54      SCI   Male      20    83    B+
## 55      SCI   Male      20    83    B+
## 56      SCI Female      40    83    B+
## 57      SCI Female      70    83    B+
## 58      SCI Female      10    82    B+
## 59      SCI Female      10    82    B+
## 60      SCI Female      20    82    B+
## 61      SCI Female      20    82    B+
## 62      SCI   Male      20    82    B+
## 63      EDU   Male      30    82    B+
## 64      SCI Female      30    82    B+
## 65      EDU   Male      40    82    B+
## 66      SCI Female      40    82    B+
## 67      SCI Female      60    82    B+
## 68      SCI Female      70    82    B+
## 69      SCI   Male      40    81    B+
## 70      EDU Female      80    81    B+
## 71      SCI Female      20    80    B+
## 72      SCI   Male      20    80    B+
## 73      EDU Female      40    80    B+
## 74      MED   Male      50    80    B+
## 75      SCI   Male      50    80    B+
## 76      SCI Female      80    80    B+
## 77      EDU   Male      10    79     B
## 78      SCI Female      10    79     B
## 79      SCI Female      10    79     B
## 80      SCI Female      10    79     B
## 81      SCI Female      20    79     B
## 82      SCI Female      40    79     B
## 83      EDU Female      40    79     B
## 84      SCI   Male      30    78     B
## 85      SCI   Male      30    78     B
## 86      SCI Female      30    78     B
## 87      SCI Female      80    78     B
## 88      SCI   Male      10    77     B
## 89      SCI Female      10    77     B
## 90      SCI Female      30    77     B
## 91      SCI   Male      30    77     B
## 92      SCI Female      30    77     B
## 93      SCI   Male      30    77     B
## 94      EDU   Male      50    77     B
## 95      EDU Female      50    77     B
## 96      SCI Female      70    77     B
## 97      SCI   Male      80    77     B
## 98      SCI   Male      80    77     B
## 99      SCI   Male      10    76     B
## 100     SCI Female      10    76     B
## 101     SCI Female      20    76     B
## 102     SCI Female      40    76     B
## 103     SCI Female      50    76     B
## 104     SCI Female      60    76     B
## 105     SCI Female      30    75    B-
## 106     SCI   Male      40    75    B-
## 107     EDU   Male      50    75    B-
## 108     EDU Female      50    75    B-
## 109     EDU Female      60    75    B-
## 110     SCI Female      60    75    B-
## 111     EDU Female      70    75    B-
## 112     SCI Female      80    75    B-
## 113     SCI Female      10    74    B-
## 114     SCI Female      20    74    B-
## 115     SCI Female      30    74    B-
## 116     SCI Female      30    74    B-
## 117     SCI Female      40    74    B-
## 118     EDU Female      60    74    B-
## 119     SCI   Male      70    74    B-
## 120     SCI Female      10    73    B-
## 121     SCI Female      20    73    B-
## 122     SCI Female      30    73    B-
## 123     SCI Female      50    73    B-
## 124     SCI   Male      60    73    B-
## 125     SCI Female      70    73    B-
## 126     SCI   Male      20    72    B-
## 127     SCI   Male      30    72    B-
## 128     SCI Female      30    72    B-
## 129     EDU   Male      40    72    B-
## 130     SCI Female      40    72    B-
## 131     SCI Female      60    72    B-
## 132     SCI Female      40    71    C+
## 133     SCI   Male      40    71    C+
## 134     SCI Female      50    71    C+
## 135     SCI Female      70    71    C+
## 136     SCI   Male      70    71    C+
## 137     AGR Female      70    71    C+
## 138     SCI Female      80    71    C+
## 139     AGR Female      80    71    C+
## 140     SCI   Male      10    70    C+
## 141     SCI   Male      10    70    C+
## 142     SCI   Male      30    70    C+
## 143     SCI Female      50    70    C+
## 144     EDU   Male      50    70    C+
## 145     SCI Female      70    70    C+
## 146     SCI Female      80    70    C+
## 147     SCI   Male      10    69    C+
## 148     EDU   Male      40    69    C+
## 149     SCI   Male      40    69    C+
## 150     SCI Female      50    69    C+
## 151     SCI Female      70    69    C+
## 152     SCI Female      10    68    C+
## 153     SCI Female      20    68    C+
## 154     SCI Female      30    68    C+
## 155     SCI   Male      30    68    C+
## 156     SCI   Male      40    68    C+
## 157     SCI Female      50    68    C+
## 158     SCI   Male      50    68    C+
## 159     EDU Female      50    68    C+
## 160     SCI Female      70    68    C+
## 161     SCI Female      80    68    C+
## 162     SCI Female      80    68    C+
## 163     SCI Female      80    68    C+
## 164     SCI   Male      10    67    C+
## 165     SCI Female      10    67    C+
## 166     SCI Female      30    67    C+
## 167     SCI   Male      50    67    C+
## 168     SCI   Male      60    67    C+
## 169     SCI   Male      60    67    C+
## 170     SCI   Male      60    67    C+
## 171     SCI Female      30    66     C
## 172     SCI   Male      30    66     C
## 173     SCI Female      40    66     C
## 174     SCI   Male      50    66     C
## 175     SCI Female      50    66     C
## 176     EDU Female      70    66     C
## 177     ART   Male      80    66     C
## 178     SCI Female      80    66     C
## 179     SCI Female      10    65     C
## 180     SCI   Male      20    65     C
## 181     SCI   Male      30    65     C
## 182     SCI   Male      30    65     C
## 183     SCI   Male      30    65     C
## 184     EDU   Male      40    65     C
## 185     SCI Female      40    65     C
## 186     SCI Female      60    65     C
## 187     SCI   Male      60    65     C
## 188     SCI   Male      10    64     C
## 189     SCI   Male      20    64     C
## 190     SCI   Male      60    64     C
## 191     EDU   Male      80    64     C
## 192     SCI   Male      10    63     C
## 193     SCI Female      10    63     C
## 194     SCI Female      20    63     C
## 195     SCI   Male      30    63     C
## 196     SCI   Male      40    63     C
## 197     SCI   Male      50    63     C
## 198     SCI Female      70    63     C
## 199     SCI   Male      10    62     C
## 200     EDU   Male      70    62     C
## 201     SCI   Male      80    62     C
## 202     SCI   Male      10    61    C-
## 203     SCI   Male      30    61    C-
## 204     SCI   Male      40    61    C-
## 205     SCI   Male      50    61    C-
## 206     EDU Female      50    61    C-
## 207     SCI Female      60    61    C-
## 208     AGR Female      60    61    C-
## 209     SCI   Male      70    61    C-
## 210     SCI   Male      10    60    C-
## 211     SCI Female      10    60    C-
## 212     AGR   Male      30    60    C-
## 213     SCI   Male      70    60    C-
## 214     SCI Female      10    59    C-
## 215     SCI   Male      30    59    C-
## 216     EDU Female      40    59    C-
## 217     EDU   Male      50    59    C-
## 218     SCI Female      60    59    C-
## 219     AGR   Male      60    59    C-
## 220     SCI   Male      30    58    C-
## 221     SCI   Male      60    58    C-
## 222     SCI Female      60    58    C-
## 223     SCI   Male      20    57    C-
## 224     SCI   Male      20    57    C-
## 225     SCI   Male      30    57    C-
## 226     SCI Female      70    57    C-
## 227     SCI   Male      10    56    D+
## 228     SCI Female      20    55    D+
## 229     SCI   Male      70    55    D+
## 230     ART   Male      80    55    D+
## 231     SCI Female      10    54    D+
## 232     EDU   Male      40    54    D+
## 233     AGR   Male      60    54    D+
## 234     SCI   Male      80    54    D+
## 235     SCI   Male      80    54    D+
## 236     SCI   Male      20    53    D+
## 237     SCI   Male      40    53    D+
## 238     SCI   Male      60    53    D+
## 239     SCI   Male      50    51     D
## 240     SCI   Male      20    49     F
## 241     SCI   Male      80    44     F
## 242     SCI   Male      50    38     F
## 243     SCI   Male      10    33     F

Data Extraction

Question 3. [2 points] Extract the dataset of sections 10 and 40. Assign the result to an object called grade_10_40 . [Hint: use a logical statement s2101_grade$Section %in% c(10,40)]

grade_10_40= s2101_grade[s2101_grade$Section %in% c(10,40),]
grade_10_40
##     College Gender Section Total Grade
## 1       SCI Female      10    98     A
## 2       SCI Female      10    97     A
## 3       EDU Female      40    96     A
## 4       EDU Female      40    96     A
## 6       SCI Female      40    94     A
## 9       SCI Female      40    93     A
## 10      EDU Female      10    93     A
## 14      SCI Female      40    91     A
## 15      EDU Female      40    91     A
## 16      EDU Female      10    90     A
## 19      SCI Female      10    90     A
## 33      SCI   Male      10    87    A-
## 34      SCI   Male      10    87    A-
## 35      SCI   Male      10    87    A-
## 36      SCI Female      10    87    A-
## 39      SCI Female      10    85    A-
## 40      SCI Female      10    85    A-
## 42      SCI Female      40    85    A-
## 51      SCI Female      10    83    B+
## 52      SCI Female      10    83    B+
## 53      SCI Female      10    83    B+
## 56      SCI Female      40    83    B+
## 58      SCI Female      10    82    B+
## 59      SCI Female      10    82    B+
## 65      EDU   Male      40    82    B+
## 66      SCI Female      40    82    B+
## 69      SCI   Male      40    81    B+
## 73      EDU Female      40    80    B+
## 77      EDU   Male      10    79     B
## 78      SCI Female      10    79     B
## 79      SCI Female      10    79     B
## 80      SCI Female      10    79     B
## 82      SCI Female      40    79     B
## 83      EDU Female      40    79     B
## 88      SCI   Male      10    77     B
## 89      SCI Female      10    77     B
## 99      SCI   Male      10    76     B
## 100     SCI Female      10    76     B
## 102     SCI Female      40    76     B
## 106     SCI   Male      40    75    B-
## 113     SCI Female      10    74    B-
## 117     SCI Female      40    74    B-
## 120     SCI Female      10    73    B-
## 129     EDU   Male      40    72    B-
## 130     SCI Female      40    72    B-
## 132     SCI Female      40    71    C+
## 133     SCI   Male      40    71    C+
## 140     SCI   Male      10    70    C+
## 141     SCI   Male      10    70    C+
## 147     SCI   Male      10    69    C+
## 148     EDU   Male      40    69    C+
## 149     SCI   Male      40    69    C+
## 152     SCI Female      10    68    C+
## 156     SCI   Male      40    68    C+
## 164     SCI   Male      10    67    C+
## 165     SCI Female      10    67    C+
## 173     SCI Female      40    66     C
## 179     SCI Female      10    65     C
## 184     EDU   Male      40    65     C
## 185     SCI Female      40    65     C
## 188     SCI   Male      10    64     C
## 192     SCI   Male      10    63     C
## 193     SCI Female      10    63     C
## 196     SCI   Male      40    63     C
## 199     SCI   Male      10    62     C
## 202     SCI   Male      10    61    C-
## 204     SCI   Male      40    61    C-
## 210     SCI   Male      10    60    C-
## 211     SCI Female      10    60    C-
## 214     SCI Female      10    59    C-
## 216     EDU Female      40    59    C-
## 227     SCI   Male      10    56    D+
## 231     SCI Female      10    54    D+
## 232     EDU   Male      40    54    D+
## 237     SCI   Male      40    53    D+
## 243     SCI   Male      10    33     F

Data Tabulation

Question 4. [3 points] Use grade_10_40 dataset to create a relative frequency table called grade_table of Grade variable. Print the table.

grade_table<-transform(table(grade_10_40$Grade))
grade_table$relative_Freq<-prop.table(grade_table$Freq)
grade_table
##    Var1 Freq relative_Freq
## 1     A   11    0.14473684
## 2    A-    7    0.09210526
## 3     B   11    0.14473684
## 4    B-    6    0.07894737
## 5    B+   10    0.13157895
## 6     C    9    0.11842105
## 7    C-    6    0.07894737
## 8    C+   11    0.14473684
## 9    D+    4    0.05263158
## 10    F    1    0.01315789
grade_table<-prop.table(grade_table$Freq)
grade_table
##  [1] 0.14473684 0.09210526 0.14473684 0.07894737 0.13157895 0.11842105
##  [7] 0.07894737 0.14473684 0.05263158 0.01315789

Data Visualization

Question 5. [3 points] Use histogram with 5 breaks to graphically represent the total scores of Science students in sections 10 and 40.

grade_science<-grade_10_40[grade_10_40$College %in% c("SCI"), ]
grade_science
##     College Gender Section Total Grade
## 1       SCI Female      10    98     A
## 2       SCI Female      10    97     A
## 6       SCI Female      40    94     A
## 9       SCI Female      40    93     A
## 14      SCI Female      40    91     A
## 19      SCI Female      10    90     A
## 33      SCI   Male      10    87    A-
## 34      SCI   Male      10    87    A-
## 35      SCI   Male      10    87    A-
## 36      SCI Female      10    87    A-
## 39      SCI Female      10    85    A-
## 40      SCI Female      10    85    A-
## 42      SCI Female      40    85    A-
## 51      SCI Female      10    83    B+
## 52      SCI Female      10    83    B+
## 53      SCI Female      10    83    B+
## 56      SCI Female      40    83    B+
## 58      SCI Female      10    82    B+
## 59      SCI Female      10    82    B+
## 66      SCI Female      40    82    B+
## 69      SCI   Male      40    81    B+
## 78      SCI Female      10    79     B
## 79      SCI Female      10    79     B
## 80      SCI Female      10    79     B
## 82      SCI Female      40    79     B
## 88      SCI   Male      10    77     B
## 89      SCI Female      10    77     B
## 99      SCI   Male      10    76     B
## 100     SCI Female      10    76     B
## 102     SCI Female      40    76     B
## 106     SCI   Male      40    75    B-
## 113     SCI Female      10    74    B-
## 117     SCI Female      40    74    B-
## 120     SCI Female      10    73    B-
## 130     SCI Female      40    72    B-
## 132     SCI Female      40    71    C+
## 133     SCI   Male      40    71    C+
## 140     SCI   Male      10    70    C+
## 141     SCI   Male      10    70    C+
## 147     SCI   Male      10    69    C+
## 149     SCI   Male      40    69    C+
## 152     SCI Female      10    68    C+
## 156     SCI   Male      40    68    C+
## 164     SCI   Male      10    67    C+
## 165     SCI Female      10    67    C+
## 173     SCI Female      40    66     C
## 179     SCI Female      10    65     C
## 185     SCI Female      40    65     C
## 188     SCI   Male      10    64     C
## 192     SCI   Male      10    63     C
## 193     SCI Female      10    63     C
## 196     SCI   Male      40    63     C
## 199     SCI   Male      10    62     C
## 202     SCI   Male      10    61    C-
## 204     SCI   Male      40    61    C-
## 210     SCI   Male      10    60    C-
## 211     SCI Female      10    60    C-
## 214     SCI Female      10    59    C-
## 227     SCI   Male      10    56    D+
## 231     SCI Female      10    54    D+
## 237     SCI   Male      40    53    D+
## 243     SCI   Male      10    33     F
grade_scienc_hist<-hist(grade_science$Total,
     breaks= 5,
     xlab="Total",
     ylab="frequency",
     col= "blue",
     main="total scores of Science students in sections 10 and 40")

par(mfrow=c(1,2)) ## keep this to show two graphs at the same row

Question 6. [3 points] Customize the obtained graphs by adding meaningful title, labels and distinct colors.

grade_scienc_hist<-hist(grade_science$Total,
     breaks= 5,
     xlab="Total",
     ylab="frequency",
     col= "Pink",
     main="total scores of Science students in sections 10 and 40")

Question 7. [2 points] Identify any patterns or differences between the two sections’ grades.

The graph represent the left skewed pattern

Data Description

Question 8. [2 points] Find the five number summary for the scores of Science students in each section.

grade_10<-grade_10_40[grade_10_40$Section==10,]
grade_10_sci<-grade_10[grade_10$College=="SCI",]
fivenum(grade_10_sci$Total)
## [1] 33 64 76 83 98
grade_40<-grade_10_40[grade_10_40$Section==40,]
grade_40_sci<-grade_40[grade_40$College=="SCI",]
fivenum(grade_40_sci$Total)
## [1] 53 68 74 82 94

Question 9. [2 points] Interpret the third quartile value for each section.

Third quartile of section 10= 83 Third qyartile of section 40= 82