num_rolls <- 24
mu <- (1+2+3+4+5+6)/6 sigma <- sqrt((1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2)/6 - mu^2)
mu_sum <- num_rolls * mu sigma_sum <- sqrt(num_rolls) * sigma
z_greater_than_84 <- (84.5 - mu_sum) / sigma_sum z_equal_to_84 <- (84 - mu_sum) / sigma_sum
prob_greater_than_84 <- 1 - pnorm(z_greater_than_84) prob_equal_to_84 <- pnorm(z_equal_to_84 + 0.5/sigma_sum) - pnorm(z_equal_to_84 - 0.5/sigma_sum)
cat(“Probability that the sum is greater than 84:”, prob_greater_than_84, “”) ## Probability that the sum is greater than 84: 0.4761728
cat(“Probability that the sum is equal to 84:”, prob_equal_to_84, “”) ## Probability that the sum is equal to 84: 0.04765436