shige — Dec 28, 2013, 9:11 PM
library(ggmcmc)
Loading required package: plyr
Loading required package: reshape2
Loading required package: ggplot2
library(coda)
Loading required package: lattice
N <- 500
X <- runif(N)
y <- 3 + 5 * X + rnorm(N)
D <- list(N=N, X=X, y=y)
md <- '
data {
int<lower=0> N;
real X[N];
real y[N];
}
parameters {
real theta[2];
real<lower=0> sigma;
}
model {
for (n in 1:N) {
y[n] ~ normal(theta[1] + theta[2] * X[n], sigma);
}
}
'
library(rstan)
Loading required package: Rcpp
Loading required package: inline
Attaching package: 'inline'
The following object is masked from 'package:Rcpp':
registerPlugin
rstan (Version 2.1.0, packaged: 2013-12-27 18:21:10 UTC, GitRev: 548aa7bbbb89)
Attaching package: 'rstan'
The following object is masked from 'package:coda':
traceplot
fit <- stan(model_code=md, data=D)
TRANSLATING MODEL 'md' FROM Stan CODE TO C++ CODE NOW.
COMPILING THE C++ CODE FOR MODEL 'md' NOW.
SAMPLING FOR MODEL 'md' NOW (CHAIN 1).
Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 200 / 2000 [ 10%] (Warmup)
Iteration: 400 / 2000 [ 20%] (Warmup)
Iteration: 600 / 2000 [ 30%] (Warmup)
Iteration: 800 / 2000 [ 40%] (Warmup)
Iteration: 1000 / 2000 [ 50%] (Warmup)
Iteration: 1200 / 2000 [ 60%] (Sampling)
Iteration: 1400 / 2000 [ 70%] (Sampling)
Iteration: 1600 / 2000 [ 80%] (Sampling)
Iteration: 1800 / 2000 [ 90%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)
Elapsed Time: 0.4 seconds (Warm-up)
0.49 seconds (Sampling)
0.89 seconds (Total)
SAMPLING FOR MODEL 'md' NOW (CHAIN 2).
Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 200 / 2000 [ 10%] (Warmup)
Iteration: 400 / 2000 [ 20%] (Warmup)
Iteration: 600 / 2000 [ 30%] (Warmup)
Iteration: 800 / 2000 [ 40%] (Warmup)
Iteration: 1000 / 2000 [ 50%] (Warmup)
Iteration: 1200 / 2000 [ 60%] (Sampling)
Iteration: 1400 / 2000 [ 70%] (Sampling)
Iteration: 1600 / 2000 [ 80%] (Sampling)
Iteration: 1800 / 2000 [ 90%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)
Elapsed Time: 0.39 seconds (Warm-up)
0.44 seconds (Sampling)
0.83 seconds (Total)
SAMPLING FOR MODEL 'md' NOW (CHAIN 3).
Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 200 / 2000 [ 10%] (Warmup)
Iteration: 400 / 2000 [ 20%] (Warmup)
Iteration: 600 / 2000 [ 30%] (Warmup)
Iteration: 800 / 2000 [ 40%] (Warmup)
Iteration: 1000 / 2000 [ 50%] (Warmup)
Iteration: 1200 / 2000 [ 60%] (Sampling)
Iteration: 1400 / 2000 [ 70%] (Sampling)
Iteration: 1600 / 2000 [ 80%] (Sampling)
Iteration: 1800 / 2000 [ 90%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)
Elapsed Time: 0.4 seconds (Warm-up)
0.4 seconds (Sampling)
0.8 seconds (Total)
SAMPLING FOR MODEL 'md' NOW (CHAIN 4).
Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 200 / 2000 [ 10%] (Warmup)
Iteration: 400 / 2000 [ 20%] (Warmup)
Iteration: 600 / 2000 [ 30%] (Warmup)
Iteration: 800 / 2000 [ 40%] (Warmup)
Iteration: 1000 / 2000 [ 50%] (Warmup)
Iteration: 1200 / 2000 [ 60%] (Sampling)
Iteration: 1400 / 2000 [ 70%] (Sampling)
Iteration: 1600 / 2000 [ 80%] (Sampling)
Iteration: 1800 / 2000 [ 90%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)
Elapsed Time: 0.42 seconds (Warm-up)
0.52 seconds (Sampling)
0.94 seconds (Total)
s <- mcmc.list(lapply(1:ncol(fit), function(x) mcmc(as.array(fit)[,x,])))
S <- ggs(s)
ggs_histogram(S)
ggs_traceplot(S)
ggs_density(S)
ggs_compare_partial(S)
ggs_running(S)
ggs_autocorrelation(S)
ggs_crosscorrelation(S)
ggs_caterpillar(S)