##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
## tibble [6,435 × 9] (S3: tbl_df/tbl/data.frame)
##  $ Store       : Factor w/ 45 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : chr [1:6435] "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
##  $ Weekly_Sales: num [1:6435] 1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 1 1 ...
##  $ Temperature : num [1:6435] 42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num [1:6435] 2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num [1:6435] 211 211 211 211 211 ...
##  $ Unemployment: num [1:6435] 8.11 8.11 8.11 8.11 8.11 ...
##  $ random      : num [1:6435] 0.288 0.788 0.409 0.883 0.94 ...

## Backward Elimination Method 
## ---------------------------
## 
## Candidate Terms: 
## 
## 1. Store 
## 2. Holiday_Flag 
## 3. Temperature 
## 4. Fuel_Price 
## 5. CPI 
## 6. Unemployment 
## 
## 
## Step   => 0 
## Model  => Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Unemployment 
## R2     => 0.918 
## 
## Initiating stepwise selection... 
## 
## 
## No more variables to be removed.
## Backward Elimination Method 
## ---------------------------
## 
## Candidate Terms: 
## 
## 1. Store 
## 2. Holiday_Flag 
## 3. Temperature 
## 4. Fuel_Price 
## 5. CPI 
## 6. Unemployment 
## 7. Store:Holiday_Flag 
## 8. Store:Temperature 
## 9. Store:Fuel_Price 
## 10. Store:CPI 
## 11. Store:Unemployment 
## 12. Holiday_Flag:Temperature 
## 13. Holiday_Flag:Fuel_Price 
## 14. Holiday_Flag:CPI 
## 15. Holiday_Flag:Unemployment 
## 16. Temperature:Fuel_Price 
## 17. Temperature:CPI 
## 18. Temperature:Unemployment 
## 19. Fuel_Price:CPI 
## 20. Fuel_Price:Unemployment 
## 21. CPI:Unemployment 
## 
## 
## Step   => 0 
## Model  => Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Unemployment + Store:Holiday_Flag + Store:Temperature + Store:Fuel_Price + Store:CPI + Store:Unemployment + Holiday_Flag:Temperature + Holiday_Flag:Fuel_Price + Holiday_Flag:CPI + Holiday_Flag:Unemployment + Temperature:Fuel_Price + Temperature:CPI + Temperature:Unemployment + Fuel_Price:CPI + Fuel_Price:Unemployment + CPI:Unemployment 
## R2     => 0.93 
## 
## Initiating stepwise selection... 
## 
## Step     => 1 
## Removed  => Unemployment 
## Model    => Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Store:Holiday_Flag + Store:Temperature + Store:Fuel_Price + Store:CPI + Store:Unemployment + Holiday_Flag:Temperature + Holiday_Flag:Fuel_Price + Holiday_Flag:CPI + Holiday_Flag:Unemployment + Temperature:Fuel_Price + Temperature:CPI + Temperature:Unemployment + Fuel_Price:CPI + Fuel_Price:Unemployment + CPI:Unemployment 
## R2       => 0.93027 
## 
## Step     => 2 
## Removed  => Holiday_Flag:CPI 
## Model    => Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Store:Holiday_Flag + Store:Temperature + Store:Fuel_Price + Store:CPI + Store:Unemployment + Holiday_Flag:Temperature + Holiday_Flag:Fuel_Price + Holiday_Flag:Unemployment + Temperature:Fuel_Price + Temperature:CPI + Temperature:Unemployment + Fuel_Price:CPI + Fuel_Price:Unemployment + CPI:Unemployment 
## R2       => 0.93027 
## 
## Step     => 3 
## Removed  => Fuel_Price:Unemployment 
## Model    => Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Store:Holiday_Flag + Store:Temperature + Store:Fuel_Price + Store:CPI + Store:Unemployment + Holiday_Flag:Temperature + Holiday_Flag:Fuel_Price + Holiday_Flag:Unemployment + Temperature:Fuel_Price + Temperature:CPI + Temperature:Unemployment + Fuel_Price:CPI + CPI:Unemployment 
## R2       => 0.93027 
## 
## Step     => 4 
## Removed  => CPI:Unemployment 
## Model    => Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Store:Holiday_Flag + Store:Temperature + Store:Fuel_Price + Store:CPI + Store:Unemployment + Holiday_Flag:Temperature + Holiday_Flag:Fuel_Price + Holiday_Flag:Unemployment + Temperature:Fuel_Price + Temperature:CPI + Temperature:Unemployment + Fuel_Price:CPI 
## R2       => 0.93026 
## 
## Step     => 5 
## Removed  => Store:Fuel_Price 
## Model    => Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Store:Holiday_Flag + Store:Temperature + Store:CPI + Store:Unemployment + Holiday_Flag:Temperature + Holiday_Flag:Fuel_Price + Holiday_Flag:Unemployment + Temperature:Fuel_Price + Temperature:CPI + Temperature:Unemployment + Fuel_Price:CPI 
## R2       => 0.92952 
## 
## 
## No more variables to be removed.
## 
## Variables Removed: 
## 
## => Unemployment 
## => Holiday_Flag:CPI 
## => Fuel_Price:Unemployment 
## => CPI:Unemployment 
## => Store:Fuel_Price

What is the R^2 of the model?

The model, using the training data, has an R^2 of 0.9295.

The model, using the validation data, has an R^2 of 0.9183.

Interpretation of 3 predictors:

Holiday_Flag1: When there is a holiday, sales will increase.

Fuel_Price: When fuel prices go up, sales will decrease.

CPI: When CPI goes up, sales will increase.