Exercise 1
Y1 <- 100
n <- 365
mu <- 0
sigma <- sqrt(1/4)
# Probabilities
prob_Y365_100 <- 1 - pnorm((100 - Y1) / sqrt(n * sigma^2))
prob_Y365_110 <- 1 - pnorm((110 - Y1) / sqrt(n * sigma^2))
prob_Y365_120 <- 1 - pnorm((120 - Y1) / sqrt(n * sigma^2))
# Output
cat("Estimated probabilities:\n")
## Estimated probabilities:
cat("Y365 >= 100:", prob_Y365_100, "\n")
## Y365 >= 100: 0.5
cat("Y365 >= 110:", prob_Y365_110, "\n")
## Y365 >= 110: 0.1475849
cat("Y365 >= 120:", prob_Y365_120, "\n")
## Y365 >= 120: 0.01814355
Exercise 2
Binomial Distribution
The moment generating function (MGF) of a binomial distribution with
parameters \(n\) (number of trials) and
\(p\) (probability of success in each
trial) is given by:
\[ M_X(t) = (1 - p + pe^t)^n \]
Expected Value
To find the expected value \(E(X)\),
we take the first derivative of the MGF with respect to \(t\), and then evaluate it at \(t = 0\):
\[ E(X) = M'_X(0) =
\frac{d}{dt}M_X(t)\bigg|_{t=0} \]
\[ E(X) = np \]
Variance
For the variance \(Var(X)\), we take
the second derivative of the MGF with respect to \(t\), and then evaluate it at \(t = 0\):
\[ Var(X) = M''_X(0) +
[M'_X(0)]^2 = \frac{d^2}{dt^2}M_X(t)\bigg|_{t=0} +
\left(\frac{d}{dt}M_X(t)\bigg|_{t=0}\right)^2 \]
\[ Var(X) = np(1-p) \]
Exponential Distribution
The moment generating function (MGF) of an exponential distribution
with parameter \(\lambda\) is given
by:
\[ M_X(t) = \frac{\lambda}{\lambda - t}
\]
Expected Value
To find the expected value \(E(X)\),
we take the first derivative of the MGF with respect to \(t\), and then evaluate it at \(t = 0\):
\[ E(X) = M'_X(0) =
\frac{d}{dt}M_X(t)\bigg|_{t=0} \]
\[ E(X) = \frac{1}{\lambda} \]
Variance
For the variance \(Var(X)\), we take
the second derivative of the MGF with respect to \(t\), and then evaluate it at \(t = 0\):
\[ Var(X) = M''_X(0) +
[M'_X(0)]^2 = \frac{d^2}{dt^2}M_X(t)\bigg|_{t=0} +
\left(\frac{d}{dt}M_X(t)\bigg|_{t=0}\right)^2 \]
\[ Var(X) = \frac{1}{\lambda^2}
\]
…
LS0tDQp0aXRsZTogIkhvbWV3b3JrIFdlZWsgOSINCmF1dGhvcjogIktvc3NpIEFrcGxha2EiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCg0KIyMgRXhlcmNpc2UgMQ0KDQpgYGB7cn0NClkxIDwtIDEwMCAgDQpuIDwtIDM2NSAgDQptdSA8LSAwICANCnNpZ21hIDwtIHNxcnQoMS80KQ0KDQojIFByb2JhYmlsaXRpZXMNCnByb2JfWTM2NV8xMDAgPC0gMSAtIHBub3JtKCgxMDAgLSBZMSkgLyBzcXJ0KG4gKiBzaWdtYV4yKSkNCnByb2JfWTM2NV8xMTAgPC0gMSAtIHBub3JtKCgxMTAgLSBZMSkgLyBzcXJ0KG4gKiBzaWdtYV4yKSkNCnByb2JfWTM2NV8xMjAgPC0gMSAtIHBub3JtKCgxMjAgLSBZMSkgLyBzcXJ0KG4gKiBzaWdtYV4yKSkNCg0KIyBPdXRwdXQNCmNhdCgiRXN0aW1hdGVkIHByb2JhYmlsaXRpZXM6XG4iKQ0KY2F0KCJZMzY1ID49IDEwMDoiLCBwcm9iX1kzNjVfMTAwLCAiXG4iKQ0KY2F0KCJZMzY1ID49IDExMDoiLCBwcm9iX1kzNjVfMTEwLCAiXG4iKQ0KY2F0KCJZMzY1ID49IDEyMDoiLCBwcm9iX1kzNjVfMTIwLCAiXG4iKQ0KYGBgDQoNCg0KIyMgRXhlcmNpc2UgMg0KDQojIyMgQmlub21pYWwgRGlzdHJpYnV0aW9uDQoNClRoZSBtb21lbnQgZ2VuZXJhdGluZyBmdW5jdGlvbiAoTUdGKSBvZiBhIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiB3aXRoIHBhcmFtZXRlcnMgXCggbiBcKSAobnVtYmVyIG9mIHRyaWFscykgYW5kIFwoIHAgXCkgKHByb2JhYmlsaXR5IG9mIHN1Y2Nlc3MgaW4gZWFjaCB0cmlhbCkgaXMgZ2l2ZW4gYnk6DQoNClxbIE1fWCh0KSA9ICgxIC0gcCArIHBlXnQpXm4gXF0NCg0KIyMjIEV4cGVjdGVkIFZhbHVlDQoNClRvIGZpbmQgdGhlIGV4cGVjdGVkIHZhbHVlIFwoIEUoWCkgXCksIHdlIHRha2UgdGhlIGZpcnN0IGRlcml2YXRpdmUgb2YgdGhlIE1HRiB3aXRoIHJlc3BlY3QgdG8gXCggdCBcKSwgYW5kIHRoZW4gZXZhbHVhdGUgaXQgYXQgXCggdCA9IDAgXCk6DQoNClxbIEUoWCkgPSBNJ19YKDApID0gXGZyYWN7ZH17ZHR9TV9YKHQpXGJpZ2d8X3t0PTB9IFxdDQoNClxbIEUoWCkgPSBucCBcXQ0KDQojIyMgVmFyaWFuY2UNCg0KRm9yIHRoZSB2YXJpYW5jZSBcKCBWYXIoWCkgXCksIHdlIHRha2UgdGhlIHNlY29uZCBkZXJpdmF0aXZlIG9mIHRoZSBNR0Ygd2l0aCByZXNwZWN0IHRvIFwoIHQgXCksIGFuZCB0aGVuIGV2YWx1YXRlIGl0IGF0IFwoIHQgPSAwIFwpOg0KDQpcWyBWYXIoWCkgPSBNJydfWCgwKSArIFtNJ19YKDApXV4yID0gXGZyYWN7ZF4yfXtkdF4yfU1fWCh0KVxiaWdnfF97dD0wfSArIFxsZWZ0KFxmcmFje2R9e2R0fU1fWCh0KVxiaWdnfF97dD0wfVxyaWdodCleMiBcXQ0KDQpcWyBWYXIoWCkgPSBucCgxLXApIFxdDQoNCiMjIEV4cG9uZW50aWFsIERpc3RyaWJ1dGlvbg0KDQpUaGUgbW9tZW50IGdlbmVyYXRpbmcgZnVuY3Rpb24gKE1HRikgb2YgYW4gZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uIHdpdGggcGFyYW1ldGVyIFwoIFxsYW1iZGEgXCkgaXMgZ2l2ZW4gYnk6DQoNClxbIE1fWCh0KSA9IFxmcmFje1xsYW1iZGF9e1xsYW1iZGEgLSB0fSBcXQ0KDQojIyMgRXhwZWN0ZWQgVmFsdWUNCg0KVG8gZmluZCB0aGUgZXhwZWN0ZWQgdmFsdWUgXCggRShYKSBcKSwgd2UgdGFrZSB0aGUgZmlyc3QgZGVyaXZhdGl2ZSBvZiB0aGUgTUdGIHdpdGggcmVzcGVjdCB0byBcKCB0IFwpLCBhbmQgdGhlbiBldmFsdWF0ZSBpdCBhdCBcKCB0ID0gMCBcKToNCg0KXFsgRShYKSA9IE0nX1goMCkgPSBcZnJhY3tkfXtkdH1NX1godClcYmlnZ3xfe3Q9MH0gXF0NCg0KXFsgRShYKSA9IFxmcmFjezF9e1xsYW1iZGF9IFxdDQoNCiMjIyBWYXJpYW5jZQ0KDQpGb3IgdGhlIHZhcmlhbmNlIFwoIFZhcihYKSBcKSwgd2UgdGFrZSB0aGUgc2Vjb25kIGRlcml2YXRpdmUgb2YgdGhlIE1HRiB3aXRoIHJlc3BlY3QgdG8gXCggdCBcKSwgYW5kIHRoZW4gZXZhbHVhdGUgaXQgYXQgXCggdCA9IDAgXCk6DQoNClxbIFZhcihYKSA9IE0nJ19YKDApICsgW00nX1goMCldXjIgPSBcZnJhY3tkXjJ9e2R0XjJ9TV9YKHQpXGJpZ2d8X3t0PTB9ICsgXGxlZnQoXGZyYWN7ZH17ZHR9TV9YKHQpXGJpZ2d8X3t0PTB9XHJpZ2h0KV4yIFxdDQoNClxbIFZhcihYKSA9IFxmcmFjezF9e1xsYW1iZGFeMn0gXF0NCg0KDQouLi4NCg0K