library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5      ✔ recipes      1.0.10
## ✔ dials        1.2.1      ✔ rsample      1.2.0 
## ✔ dplyr        1.1.4      ✔ tibble       3.2.1 
## ✔ ggplot2      3.4.4      ✔ tidyr        1.3.0 
## ✔ infer        1.0.6      ✔ tune         1.1.2 
## ✔ modeldata    1.3.0      ✔ workflows    1.1.4 
## ✔ parsnip      1.2.0      ✔ workflowsets 1.0.1 
## ✔ purrr        1.0.2      ✔ yardstick    1.3.0
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ recipes::step()  masks stats::step()
## • Search for functions across packages at https://www.tidymodels.org/find/
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.4
## ✔ lubridate 1.9.3     ✔ stringr   1.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ readr::col_factor() masks scales::col_factor()
## ✖ purrr::discard()    masks scales::discard()
## ✖ dplyr::filter()     masks stats::filter()
## ✖ stringr::fixed()    masks recipes::fixed()
## ✖ dplyr::lag()        masks stats::lag()
## ✖ readr::spec()       masks yardstick::spec()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(AmesHousing)
## Warning: package 'AmesHousing' was built under R version 4.3.3

Part 1

#a. import the data
boston <- read_csv("boston.csv")
## Rows: 506 Columns: 16
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (16): lon, lat, cmedv, crim, zn, indus, chas, nox, rm, age, dis, rad, ta...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# b. create a 70-30 train/test dataset split
set.seed(123)
split <- initial_split(boston, prop = 0.7, strata = cmedv)
boston_train <- training(split)
boston_test <- testing(split)

# c. fit a multiple linear regression model using all predictors in their current state
boston_lm1 <- linear_reg() %>%
  fit(cmedv ~ ., data = boston_train)

# d. compute the RMSE on the test data
boston_lm1 %>%
  predict(boston_test) %>%
  bind_cols(boston_test %>% select(cmedv)) %>%
  rmse(truth = cmedv, estimate = .pred)
## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard        4.83
  1. Now, fill in the blanks to apply feature engineering steps to standardize and normalize the numeric features prior to modeling.
# a. create a recipe
mlr_recipe <- recipe(cmedv ~ ., data = boston_train) %>%
  step_YeoJohnson(all_numeric_predictors()) %>%
  step_normalize(all_numeric_predictors()) 

# b. Create a workflow object that contains the model and recipe
mlr_wflow <- workflow() %>%
  add_model(linear_reg()) %>%
  add_recipe(mlr_recipe)

# c. train the model
mlr_fit <- mlr_wflow %>%
  fit(data = boston_train)

# d. compute the RMSE on the test data
mlr_fit %>%
  predict(boston_test) %>%
  bind_cols(boston_test %>% select(cmedv)) %>%
  rmse(truth = cmedv, estimate = .pred)
## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard        4.43

Recall the model we built in this section. We had to remove 5 troublesome predictor variables. These fea- tures caused a problem because of novel levels. For example, there is only one observation where MS_SubClass == One_and_Half_Story_PUD_All_Ages.

# Import Ames data and split into train/test
ames <- AmesHousing::make_ames()
set.seed(123) # for reproducibility
split <- initial_split(ames, prop = 0.7, strata = "Sale_Price")
ames_train <- training(split)
ames_test <- testing(split)

# Remove trouble variables
trbl_vars <- c("MS_SubClass", "Condition_2", "Exterior_1st",
               "Exterior_2nd", "Misc_Feature")
ames_train_subset <- ames_train %>%
  select(-trbl_vars)
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## ℹ Please use `all_of()` or `any_of()` instead.
##   # Was:
##   data %>% select(trbl_vars)
## 
##   # Now:
##   data %>% select(all_of(trbl_vars))
## 
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# Train the model without the above trouble variables
ames_lm1 <- linear_reg() %>%
  fit(Sale_Price ~ ., data = ames_train_subset)

# Compute test data generalization RMSE
ames_lm1 %>%
  predict(ames_test) %>%
  bind_cols(ames_test) %>%
  rmse(truth = Sale_Price, estimate = .pred)
## Warning in predict.lm(object = object$fit, newdata = new_data, type =
## "response", : prediction from rank-deficient fit; consider predict(.,
## rankdeficient="NA")
## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard      22959.
mlr_recipe <- recipe(Sale_Price ~ ., data = ames_train) %>%
  step_other(all_nominal_predictors(), threshold =  0.01, other = "other")

mlr_wflow <- workflow() %>%
  add_model(linear_reg()) %>%
  add_recipe(mlr_recipe)

mlr_fit <- mlr_wflow %>%
  fit(data = ames_train)

mlr_fit %>%
  predict(ames_test) %>%
  bind_cols(ames_test %>% select(Sale_Price)) %>%
  rmse(truth = Sale_Price, estimate = .pred)
## Warning in predict.lm(object = object$fit, newdata = new_data, type =
## "response", : prediction from rank-deficient fit; consider predict(.,
## rankdeficient="NA")
## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard      25917.

Part 2

# a. import the Advertising.csv data
advertising <- read_csv("Advertising.csv")
## Rows: 200 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (4): TV, radio, newspaper, sales
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# b. create a 70-30 train/test dataset split
set.seed(123)
split <- initial_split(advertising, prop = 0.7, strata = sales)
advertising_train <- training(split)
advertising_test <- testing(split)
  1. Fill in the blanks to apply 10-fold cross-validation procedure that models Sales as a function of all three predictors (without any feature engineering)
# create a 10-fold cross validation object
set.seed(123)
kfolds <- vfold_cv(advertising_train, v = 10, strata = sales)

# Create recipe with no feature engineering steps
mlr_recipe <- recipe(sales ~ ., data = advertising_train)

# Create workflow object
mlr_wflow <- workflow() %>%
  add_model(linear_reg()) %>%
  add_recipe(mlr_recipe)

# Fit our model across the 10-fold CV
mlr_fit_cv <- mlr_wflow %>%
  fit_resamples(kfolds)
  1. What is the average cross-validation RMSE?
collect_metrics(mlr_fit_cv)
## # A tibble: 2 × 6
##   .metric .estimator  mean     n std_err .config             
##   <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   1.65     10  0.154  Preprocessor1_Model1
## 2 rsq     standard   0.913    10  0.0166 Preprocessor1_Model1
  1. What is the range of cross-validation RMSE values across all ten folds?
collect_metrics(mlr_fit_cv, summarize = FALSE) %>%
  filter(.metric == 'rmse')
## # A tibble: 10 × 5
##    id     .metric .estimator .estimate .config             
##    <chr>  <chr>   <chr>          <dbl> <chr>               
##  1 Fold01 rmse    standard       2.59  Preprocessor1_Model1
##  2 Fold02 rmse    standard       1.20  Preprocessor1_Model1
##  3 Fold03 rmse    standard       1.73  Preprocessor1_Model1
##  4 Fold04 rmse    standard       1.44  Preprocessor1_Model1
##  5 Fold05 rmse    standard       2.23  Preprocessor1_Model1
##  6 Fold06 rmse    standard       0.975 Preprocessor1_Model1
##  7 Fold07 rmse    standard       1.73  Preprocessor1_Model1
##  8 Fold08 rmse    standard       1.58  Preprocessor1_Model1
##  9 Fold09 rmse    standard       1.75  Preprocessor1_Model1
## 10 Fold10 rmse    standard       1.23  Preprocessor1_Model1
  1. Fill in the blanks to apply a boostrap resampling procedure that models Sales as a function of all three predictors (without any feature engineering). Use 10 bootstrap samples
# create bootstrap sample object
set.seed(123)
bs_samples <- bootstraps(advertising_train, times = 10, strata = sales)

# fit our model across the bootstrapped samples
mlr_fit_bs <- mlr_wflow %>%
  fit_resamples(bs_samples)
  1. What is the average bootstrap RMSE?
collect_metrics(mlr_fit_bs)
## # A tibble: 2 × 6
##   .metric .estimator  mean     n std_err .config             
##   <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   1.83     10  0.0973 Preprocessor1_Model1
## 2 rsq     standard   0.885    10  0.0102 Preprocessor1_Model1
  1. What is the range of bootstrap RMSE values across all ten bootstrap samples? __________
collect_metrics(mlr_fit_bs, summarize = FALSE) %>%
  filter(.metric == 'rmse')
## # A tibble: 10 × 5
##    id          .metric .estimator .estimate .config             
##    <chr>       <chr>   <chr>          <dbl> <chr>               
##  1 Bootstrap01 rmse    standard        2.02 Preprocessor1_Model1
##  2 Bootstrap02 rmse    standard        2.02 Preprocessor1_Model1
##  3 Bootstrap03 rmse    standard        1.42 Preprocessor1_Model1
##  4 Bootstrap04 rmse    standard        1.61 Preprocessor1_Model1
##  5 Bootstrap05 rmse    standard        1.57 Preprocessor1_Model1
##  6 Bootstrap06 rmse    standard        1.93 Preprocessor1_Model1
##  7 Bootstrap07 rmse    standard        1.75 Preprocessor1_Model1
##  8 Bootstrap08 rmse    standard        2.51 Preprocessor1_Model1
##  9 Bootstrap09 rmse    standard        1.76 Preprocessor1_Model1
## 10 Bootstrap10 rmse    standard        1.75 Preprocessor1_Model1