# create a vector class
num_s25 = vector()
sum_s25 = vector()
mean_a25 = vector()
ind_num = 25
# run the for loop 1000 times
for (x in 1:1000){
a = runif(ind_num, min = 0, max = 20)
num_s25[[x]] = sum(a)
sum_s25[[x]] = (sum(a) - (ind_num * mean(a)))/(sqrt(ind_num) - sd(a))
mean_a25[[x]] = mean(a)
}
summary(num_s25)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 178.0 228.1 249.4 249.0 269.1 341.3
summary(sum_s25)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.264e-12 0.000e+00 0.000e+00 -8.016e-15 0.000e+00 7.067e-13
summary(mean_a25)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.119 9.125 9.975 9.959 10.762 13.651
barplot(num_s25)
barplot(sum_s25)
barplot(mean_a25)
The fit for S25 is better than the standard sum of S25 and the mean of A25.