Vanderbilt University (Nashville, Tennessee)
2024-03-26
Support for this work is graciously acknowledged from the Data to Policy initiative administered by Vital Strategies and funded by Bloomberg Philanthropies and the CDC Foundation.
Draft manuscript (with R code) available online at https://graveja0.github.io/dalys/
Adapting existing models for DALY (rather than QALY) outcomes.
Adapting existing models to incorporate background mortality and disease-specific mortality based on LMIC-specific life tables and vital statistics.
Accumulation and application of skills in advanced modeling techniques to guide decisionmaking, understand sources of uncertainty, and prioritize future knowledge generation.
Methodological & technological “lock-in” necessitates considerable input & expertise to adapt existing models to new contexts.
Additional slides below (hit down button).
Additional slides below (hit down button).
For a given condition c,
YLD(c) = D_c \cdot L_c
DALY(c,a) = YLD(c) + YLL(a)
Additional slides below (hit down button).
At age of death a, and based on discount rate r, YLL(a)= \frac{1}{r}\left(1-e^{-r Ex(a)}\right)
At cycle t, and for cycle duration \Delta_t
YLD(c,\Delta_t) = D_c \bigg ( \frac{1}{r_{\Delta_t}}(1-e^{-r_{\Delta_t}}) \bigg ) \Delta_t
This approach applies a discount factor over time within a discrete time cycle to maintain the continuous time discounting approach used by the GBD.
Draws exclusively on Global Burden of Disease data.
Framework and code is adaptable to any disease, country/region, year, gender captured in GBD data.
Draft paper builds on existing (Sick-Sicker) didactic model.
Description | Source |
---|---|
Life Tables | Global Burden of Disease Collaborative Network (2020b) |
Disease Incidence | Global Burden of Disease Collaborative Network (2020c) |
Disease-Related Death | Global Burden of Disease Collaborative Network (2020c) |
Disease Prevalence by Age | Global Burden of Disease Collaborative Network (2020c) |
Reference Life Table | Global Burden of Disease Collaborative Network (2021) |
Disability Weights | Global Burden of Disease Collaborative Network (2020a) |
Constructing the cause-deleted life table requires two necessary inputs:
Figure 1: Fitted vs. Observed Mortality Using Heligman-Pollard Parametric Mortality Model
Figure 2: Prevalence by Age, Model vs. GBD Data
Requires Trace | Cause Specific Death State | Direct Calculation of Outcomes | Higher-Order Moments | |
---|---|---|---|---|
1. Markov Trace (Beginner) |
expm()
)
The exponential of a matrix A, denoted as e^A or \exp(A), is defined using the power series expansion:
e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \frac{A^4}{4!} + \ldots = \sum_{n=0}^{\infty} \frac{A^n}{n!}
Age | Healthy | CVD | DeathOC | DeathCVD | Delta_DeathCVD |
---|---|---|---|---|---|
0 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 0.9963 | 0.0002 | 0.0035 | 0.0000 | 0.0000 |
... | ... | ... | ... | ... | ... |
44 | 0.9441 | 0.0329 | 0.0229 | 0.0001 | 0.0000 |
45 | 0.9389 | 0.0365 | 0.0245 | 0.0001 | 0.0000 |
46 | 0.9337 | 0.0401 | 0.0260 | 0.0001 | 0.0000 |
... | ... | ... | ... | ... | ... |
79 | 0.3860 | 0.2765 | 0.3027 | 0.0349 | 0.0062 |
80 | 0.3598 | 0.2703 | 0.3289 | 0.0410 | 0.0061 |
81 | 0.3355 | 0.2638 | 0.3538 | 0.0470 | 0.0060 |
... | ... | ... | ... | ... | ... |
119 | 0.0000 | 0.0000 | 0.8123 | 0.1877 | 0.0000 |
120 | 0.0000 | 0.0000 | 0.8123 | 0.1877 | 0.0000 |
Requires Trace | Cause Specific Death State | Direct Calculation of Outcomes | Higher-Order Moments | |
---|---|---|---|---|
1. Markov Trace (Beginner) | ||||
2. Transition States (Intermediate) | Optional |
trDCVD
reflects an accumulator state (i.e., P(trDCVD
trDCVD
)=1)Age | Healthy | CVD | DeathOC | DeathCVD | Delta_DeathCVD |
---|---|---|---|---|---|
0 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 0.9963 | 0.0002 | 0.0035 | 0.0000 | 0.0000 |
... | ... | ... | ... | ... | ... |
44 | 0.9441 | 0.0329 | 0.0229 | 0.0001 | 0.0000 |
45 | 0.9389 | 0.0365 | 0.0245 | 0.0001 | 0.0000 |
46 | 0.9337 | 0.0401 | 0.0260 | 0.0001 | 0.0000 |
... | ... | ... | ... | ... | ... |
79 | 0.3860 | 0.2765 | 0.3027 | 0.0349 | 0.0062 |
80 | 0.3598 | 0.2703 | 0.3289 | 0.0410 | 0.0061 |
81 | 0.3355 | 0.2638 | 0.3538 | 0.0470 | 0.0060 |
... | ... | ... | ... | ... | ... |
119 | 0.0000 | 0.0000 | 0.8123 | 0.1877 | 0.0000 |
120 | 0.0000 | 0.0000 | 0.8123 | 0.1877 | 0.0000 |
Age | Healthy | CVD | Death | trDeathCVD |
---|---|---|---|---|
0 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 0.9963 | 0.0002 | 0.0035 | 0.0000 |
... | ... | ... | ... | ... |
44 | 0.9441 | 0.0329 | 0.0230 | 0.0000 |
45 | 0.9389 | 0.0365 | 0.0246 | 0.0000 |
46 | 0.9337 | 0.0401 | 0.0261 | 0.0000 |
... | ... | ... | ... | ... |
79 | 0.3860 | 0.2765 | 0.3376 | 0.0062 |
80 | 0.3598 | 0.2703 | 0.3699 | 0.0061 |
81 | 0.3355 | 0.2638 | 0.4007 | 0.0060 |
... | ... | ... | ... | ... |
119 | 0.0000 | 0.0000 | 1.0000 | 0.0000 |
120 | 0.0000 | 0.0000 | 1.0000 | 0.0000 |
Requires Trace | Cause Specific Death State | Direct Calculation of Outcomes | Higher-Order Moments | |
---|---|---|---|---|
1. Markov Trace (Beginner) | ||||
2. Transition States (Intermediate) | Optional | |||
3. Markov Chain with Rewards (Advanced) |
Additional slides below (hit down button).
\begin{aligned} \tau &= \text{Number of transient (non-absorbing) states}\\ \alpha &= \text{Number of absorbing states}\\ \omega &= \text{Number of cycles (age classes)} \\ s &= \text{Total number of states; }s=\tau\omega+\alpha \\ \mathbf{K} &= \text{vec-permutation matrix; parameters }\tau,\omega\\ \mathbf{U}_{t} &= \text{Transition matrix at time }t, \text{for }t=1,\dots,\omega\\ \mathbf{M}_{t} &= \text{Mortality matrix at time }t, \text{for } t = 1,\dots\omega \\ \mathbf{D}_{j} &=\text{Age advancement matrix for stage }j, \text{for }j=1,\dots,\tau \end{aligned}
For a given age/cycle t,
\mathbf{Q}_t=\left(\begin{array}{c|c} \mathbf{V}_t & \mathbf{0} \\ \hline \mathbf{S}_t & \mathbf{0} \end{array}\right)
\mathbf{P}_t =\left(\begin{array}{c|c} \mathbf{U}_t & \mathbf{0} \\ \hline \mathbf{M}_t & \mathbf{0} \end{array}\right)
\mathbf{D}_j=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & {[1]} \end{array}\right) \quad j=1, \ldots, \tau
\mathbb{U}=\left(\begin{array}{c|c|c}
\mathbf{U}_1 & \cdots & \mathbf{0} \\
\hline & \ddots & \\
\hline \mathbf{0} & \cdots & \mathbf{U}_\omega
\end{array}\right)
\mathbb{D}=\left(\begin{array}{c|c|c}
\mathbf{D}_1 & \cdots & \mathbf{0} \\
\hline & \ddots & \\
\hline \mathbf{0} & \cdots & \mathbf{D}_\tau
\end{array}\right)
\widetilde{\mathbf{U}}=\mathbf{K}^{\top} \mathbb{D} \mathbf{K} \mathbb{U} \quad \tau \omega \times \tau \omega
\widetilde{\mathbf{M}}=\left(\begin{array}{lll}
\mathbf{M}_1 & \cdots & \mathbf{M}_\omega
\end{array}\right)
\widetilde{\mathbf{P}}=\left(\begin{array}{c|c}
\widetilde{\mathbf{U}} & \mathbf{0}_{\tau \omega \times \alpha} \\
\hline \widetilde{\mathbf{M}} & \mathbf{I}_{\alpha \times \alpha}
\end{array}\right)
(Analogue to \mathbf{P} in Approaches 1 & 2)
Age | Healthy | CVD | DeathOC | DeathCVD | YLD_t | Delta_DeathCVD | Ex | YLL_t |
---|---|---|---|---|---|---|---|---|
0 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 88.8679 | 0.0000 |
1 | 0.9963 | 0.0002 | 0.0035 | 0.0000 | 0.0000 | 0.0000 | 87.9966 | 0.0000 |
... | ... | ... | ... | ... | ... | |||
44 | 0.9441 | 0.0329 | 0.0229 | 0.0001 | 0.0013 | 0.0000 | 45.4091 | 0.0006 |
45 | 0.9389 | 0.0365 | 0.0245 | 0.0001 | 0.0015 | 0.0000 | 44.4323 | 0.0007 |
46 | 0.9337 | 0.0401 | 0.0260 | 0.0001 | 0.0016 | 0.0000 | 43.4727 | 0.0007 |
... | ... | ... | ... | ... | ... | |||
79 | 0.3860 | 0.2765 | 0.3027 | 0.0349 | 0.0113 | 0.0062 | 14.0116 | 0.0872 |
80 | 0.3598 | 0.2703 | 0.3289 | 0.0410 | 0.0111 | 0.0061 | 13.2386 | 0.0807 |
81 | 0.3355 | 0.2638 | 0.3538 | 0.0470 | 0.0108 | 0.0060 | 12.5889 | 0.0749 |
... | ... | ... | ... | ... | ... | |||
119 | 0.0000 | 0.0000 | 0.8123 | 0.1877 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
120 | 0.0000 | 0.0000 | 0.8123 | 0.1877 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Define payoff vectors for YLL & YLD:
Additional slides below (hit down button).
\widetilde{\mathbf{C}}_{1}=\frac{1}{2} \mathbf{1}_{\alpha} \mathbf{v_1}^{\top} where \mathbf{1}_{\alpha} is a vector of ones with length \alpha.
Combine \widetilde{\mathbf{B}}_{1} and \widetilde{\mathbf{C}}_{1} to obtain the final reward matrix for expected YLD outcomes,
\widetilde{\mathbf{R}}^{YLD}_{1}=\left(\begin{array}{c|c} \widetilde{\mathbf{B}}_{1} & \mathbf{0} \\ \hline \widetilde{\mathbf{C}}_{1} & \mathbf{0} \end{array}\right) which has same block structure and dimensions as the transition probability matrix \widetilde{\mathbf{P}}.
\widetilde{\mathbf{\eta}}=\left(\begin{array}{c} \eta_{11} \\ \vdots \\ \eta_{\tau 1} \\ \hline \vdots \\ \hline \eta_{1 \omega} \\ \vdots \\ \eta_{\tau \omega} \end{array}\right) where \eta_{i x} is remaining life expectancy for an individual in health state i at a given age x.
\widetilde{\mathbf{\eta}}=\left(\begin{array}{c} \eta_{H,0} = 88.87 \\ \eta_{CVD,0} = 88.87 \\ \hline \vdots \\ \hline \eta_{H,95} = 5.92 \\ \eta_{CVD,95} = 5.92 \\ \end{array}\right)
We next construct the reward matrices:
\begin{aligned} \widetilde{\mathbf{B}}_{1} & =\left(\mathbf{0}_{\tau \omega \times \tau \omega}\right) \\ \widetilde{\mathbf{C}}_{1} & =\left(\begin{array}{c} \widetilde{\boldsymbol{\eta}}_{1}^{\top} \\ \mathbf{0}_{1 \times \tau \omega} \end{array}\right) . \end{aligned} and
\widetilde{\mathbf{R}}^{YLL}_{1}=\left(\begin{array}{c|c} \mathbf{0}_{\tau \omega \times \tau \omega} & \mathbf{0}_{\tau \omega \times 2} \\ \hline \widetilde{\boldsymbol{\eta}}_{1}^{\top} & \mathbf{0}_{1 \times 2} \\ \mathbf{0}_{1 \times \tau \omega} & \mathbf{0}_{1 \times 2} \end{array}\right)
Expected YLD and YLL outcomes (Y) are estimated by
\begin{aligned} & \widetilde{\boldsymbol{\rho}}^{Y}_{1}=\widetilde{\mathbf{N}}^{\top} \mathbf{Z}\left(\widetilde{\mathbf{P}} \odot \widetilde{\mathbf{R}}^Y_{1}\right)^{\top} \mathbf{1}_{s} \end{aligned} where \widetilde{\mathbf{R}}^Y_{1} is the relevant reward matrix, \widetilde{\mathbf{N}} is the fundamental matrix, \widetilde{\mathbf{N}}=(\mathbf{I}-\widetilde{\mathbf{U}})^{-1}, and \mathbf{Z} is
\mathbf{Z}=\left(\mathbf{I}_{\tau \omega} \mid \mathbf{0}_{\tau \omega \times \alpha}\right)
Markov Trace (1&2) | Markov Chain With Rewards (3) | Shortcut 1: Accumulate Death State Occupancy | Shortcut 2: QALY-like DALY | ||||
---|---|---|---|---|---|---|---|
Cost | |||||||
Natural History | 8,861 | 8,615 | 8,861 | 8,861 | |||
Prevention Only | 11,803 | 11,585 | 11,803 | 11,803 | |||
Treatment Only | 18,070 | 17,577 | 18,070 | 18,070 | |||
Prevention + Treatment | 20,279 | 19,830 | 20,279 | 20,279 | |||
DALY | |||||||
Natural History | 2.28 | 2.28 | 6.77 | 80.71 | |||
Prevention Only | 2.12 | 2.12 | 6.31 | 80.85 | |||
Treatment Only | 2.07 | 2.07 | 6.1 | 80.88 | |||
Prevention + Treatment | 1.93 | 1.93 | 5.69 | 81.01 | |||
ICER | |||||||
Natural History | ref. | ref. | ref. | ref. | |||
Prevention Only | 18,062 | 18,233 | 6,420 | 21,628 | |||
Treatment Only | Dominated (Extended) | Dominated (Extended) | Dominated (Extended) | Dominated (Extended) | |||
Prevention + Treatment | 43,416 | 42,236 | 13,566 | 54,642 |
Requires Trace | Cause Specific Death State | Direct Calculation of Outcomes | Higher-Order Moments | |
---|---|---|---|---|
1. Markov Trace (Beginner) | ||||
2. Transition States (Intermediate) | Optional | |||
3. Markov Chain with Rewards (Advanced) |
john.graves@vanderbilt.edu
Draft manuscript (with R code) available online at https://graveja0.github.io/dalys/