knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
options(digits = 3)

libraries <- c("here",         # directory access
               "relativeVariability", # gh/seanchrismurphy
               "rempsyc",      # simple slope analysis
               "rties",        # coupled damped oscillator
               "psych",        # fisher's z
               "Hmisc",        # correlation matrix
               "rio",          # import export
               "tidyr",        # long to wide
               "forestplot",   # forest plot of actual vs perceived
               "ggplot2",      # plots
               "kableExtra",   # scroll box
               "dplyr",        # general wrangling
               "lavaan")       # APIM

lapply(libraries, require, character.only = TRUE)

bl_path   <- paste0(here(), "/data/baseline_cleaned.RDS")
esm_path  <- paste0(here(), "/data/esm_cleaned.RDS")
dict_path <- paste0(here(), "/data/dict.xlsx")

source(paste0(here(), "/script/00_helpers.R"))

Meta Data

This is the analytic report for the Dynamic Assortative Mating paper.

  • Online access: This analytic report is published on RPubs.
  • Preregistration document: OSF.
  • Descriptives and exploratory data analysis: RPubs.
# load in data
baseline <- rio::import(bl_path)
esm <- rio::import(esm_path)
dict <- rio::import(dict_path)

# example data
head(baseline) %>% 
  knitr::kable(
    caption = "Example first 6 rows of the baseline dataframe"
  ) %>% 
  kableExtra::kable_styling() %>%
  scroll_box(height = "300px")
Example first 6 rows of the baseline dataframe
Couple_ID Participant_ID bfas_self_1 bfas_self_2 bfas_self_3 bfas_self_4 bfas_self_5 bfas_self_6 bfas_self_7 bfas_self_8 bfas_self_9 bfas_self_10 bfas_self_11 bfas_self_12 bfas_self_13 bfas_self_14 bfas_self_15 bfas_self_16 bfas_self_17 bfas_self_18 bfas_self_19 bfas_self_20 bfas_self_21 bfas_self_22 bfas_self_23 bfas_self_24 bfas_self_25 bfas_self_26 bfas_self_27 bfas_self_28 bfas_self_29 bfas_self_30 bfas_self_31 bfas_self_32 bfas_self_33 bfas_self_34 bfas_self_35 bfas_self_36 bfas_self_37 bfas_self_38 bfas_self_39 bfas_self_40 bfas_self_41 bfas_self_42 bfas_self_43 bfas_self_44 bfas_self_45 bfas_self_46 bfas_self_47 bfas_self_48 bfas_self_49 bfas_self_50 bfas_self_51 bfas_self_52 bfas_self_53 bfas_self_54 bfas_self_55 bfas_self_56 bfas_self_57 bfas_self_58 bfas_self_59 bfas_self_60 bfas_self_61 bfas_self_62 bfas_self_63 bfas_self_64 bfas_self_65 bfas_self_66 bfas_self_67 bfas_self_68 bfas_self_69 bfas_self_70 bfas_self_71 bfas_self_72 bfas_self_73 bfas_self_74 bfas_self_75 bfas_self_76 bfas_self_77 bfas_self_78 bfas_self_79 bfas_self_80 bfas_self_81 bfas_self_82 bfas_self_83 bfas_self_84 bfas_self_85 bfas_self_86 bfas_self_87 bfas_self_88 bfas_self_89 bfas_self_90 bfas_self_91 bfas_self_92 bfas_self_93 bfas_self_94 bfas_self_95 bfas_self_96 bfas_self_97 bfas_self_98 bfas_self_99 bfas_self_100 bfas_partner_1 bfas_partner_2 bfas_partner_3 bfas_partner_4 bfas_partner_5 bfas_partner_6 bfas_partner_7 bfas_partner_8 bfas_partner_9 bfas_partner_10 bfas_partner_11 bfas_partner_12 bfas_partner_13 bfas_partner_14 bfas_partner_15 bfas_partner_16 bfas_partner_17 bfas_partner_18 bfas_partner_19 bfas_partner_20 bfas_partner_21 bfas_partner_22 bfas_partner_23 bfas_partner_24 bfas_partner_25 bfas_partner_26 bfas_partner_27 bfas_partner_28 bfas_partner_29 bfas_partner_30 bfas_partner_31 bfas_partner_32 bfas_partner_33 bfas_partner_34 bfas_partner_35 bfas_partner_36 bfas_partner_37 bfas_partner_38 bfas_partner_39 bfas_partner_40 bfas_partner_41 bfas_partner_42 bfas_partner_43 bfas_partner_44 bfas_partner_45 bfas_partner_46 bfas_partner_47 bfas_partner_48 bfas_partner_49 bfas_partner_50 bfas_partner_51 bfas_partner_52 bfas_partner_53 bfas_partner_54 bfas_partner_55 bfas_partner_56 bfas_partner_57 bfas_partner_58 bfas_partner_59 bfas_partner_60 bfas_partner_61 bfas_partner_62 bfas_partner_63 bfas_partner_64 bfas_partner_65 bfas_partner_66 bfas_partner_67 bfas_partner_68 bfas_partner_69 bfas_partner_70 bfas_partner_71 bfas_partner_72 bfas_partner_73 bfas_partner_74 bfas_partner_75 bfas_partner_76 bfas_partner_77 bfas_partner_78 bfas_partner_79 bfas_partner_80 bfas_partner_81 bfas_partner_82 bfas_partner_83 bfas_partner_84 bfas_partner_85 bfas_partner_86 bfas_partner_87 bfas_partner_88 bfas_partner_89 bfas_partner_90 bfas_partner_91 bfas_partner_92 bfas_partner_93 bfas_partner_94 bfas_partner_95 bfas_partner_96 bfas_partner_97 bfas_partner_98 bfas_partner_99 bfas_partner_100 panas_self_1 panas_self_2 panas_self_3 panas_self_4 panas_self_5 panas_self_6 panas_self_7 panas_self_8 panas_self_9 panas_self_10 panas_self_11 panas_self_12 panas_self_13 panas_self_14 panas_self_15 panas_self_16 panas_self_17 panas_self_18 panas_self_19 panas_self_20 panas_partner_1 panas_partner_2 panas_partner_3 panas_partner_4 panas_partner_5 panas_partner_6 panas_partner_7 panas_partner_8 panas_partner_9 panas_partner_10 panas_partner_11 panas_partner_12 panas_partner_13 panas_partner_14 panas_partner_15 panas_partner_16 panas_partner_17 panas_partner_18 panas_partner_19 panas_partner_20 csi_happiness csi_agreement_1 csi_agreement_2 csi_agreement_3 csi_frequency_1 csi_frequency_2 csi_general_1 csi_general_2 csi_general_3 csi_general_4 csi_general_5 csi_general_6 csi_general_7 csi_general_8 csi_general_9 csi_general_10 csi_general_11 csi_general_12 csi_satisfaction_1 csi_satisfaction_2 csi_satisfaction_3 csi_satisfaction_4 csi_compare csi_enjoyment_1 csi_enjoyment_2 csi_feeling_1 csi_feeling_2 csi_feeling_3 csi_feeling_4 csi_feeling_5 csi_feeling_6 csi_feeling_7 age sex sex_3_TEXT gender gender_6_TEXT sexuality sexuality_5_TEXT duration race edu ses politics religion race_cat P_num self_neuro self_agree self_consci self_extra self_open partner_neuro partner_agree partner_consci partner_extra partner_open self_pa self_na partner_pa partner_na csi_overall self_withd self_compa self_indus self_enthu self_intel self_volat self_polit self_order self_assert self_opena partner_withd partner_compa partner_indus partner_enthu partner_intel partner_volat partner_polit partner_order partner_assert partner_opena
1002 1002001 3 4 3 3 2 4 3 1 2 5 5 3 2 3 1 4 3 5 2 5 3 5 2 5 2 4 5 4 1 5 4 4 2 5 4 5 4 3 3 5 4 5 2 4 5 5 4 3 1 4 5 5 3 2 4 4 3 5 3 5 4 3 2 4 4 5 5 4 3 5 4 5 1 4 3 3 5 5 2 5 5 5 1 4 2 3 4 4 1 5 4 3 1 5 2 5 4 5 2 5 3 5 5 3 5 1 2 3 4 5 2 4 5 4 2 2 4 3 3 5 3 5 4 4 4 1 4 4 4 3 1 5 5 4 5 1 5 2 3 2 3 5 4 3 1 2 4 3 3 2 3 5 5 1 4 1 5 2 3 4 2 5 4 4 4 2 5 3 4 4 3 4 4 2 5 1 5 4 4 3 5 5 4 4 3 1 4 2 4 4 1 5 4 4 5 2 5 3 3 5 3 2 3 2 1 3 3 2 4 2 2 3 2 5 4 3 1 2 3 2 4 1 3 2 4 2 1 1 4 3 1 5 1 3 2 4 5 1 4 2 6 5 3 4 5 5 5 5 5 2 5 5 4 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 22 0 NA 5 4 51 White 2 4 1 1 1 1 4.15 4.10 2.90 2.95 3.90 2.00 4.55 3.65 3.40 3.75 2.8 2.4 3.9 1.4 153 4.1 4.2 1.9 3.9 2.9 4.2 4.0 3.9 2.0 4.9 2.6 4.8 4.4 3.3 3.8 1.4 4.3 2.9 3.5 3.7
1002 1002002 4 4 2 1 5 1 2 1 4 5 4 2 1 2 4 2 4 3 2 4 2 4 2 2 5 1 4 2 1 2 1 5 4 2 5 1 5 2 1 4 4 4 2 1 2 1 4 1 4 2 4 4 2 2 4 1 4 2 2 2 2 4 2 1 4 1 4 2 1 4 4 4 1 2 4 1 5 4 4 5 4 4 2 3 4 1 5 1 4 4 2 5 2 3 4 1 4 4 2 4 4 5 2 3 4 1 2 4 2 4 5 2 2 5 4 4 5 4 4 5 4 4 2 4 4 4 4 5 2 5 1 5 4 5 4 4 5 2 4 5 2 4 2 4 5 2 4 2 1 5 5 5 2 4 4 2 5 2 2 4 4 5 2 4 4 2 5 4 3 5 2 3 2 5 2 2 5 4 4 5 5 5 2 3 4 4 5 1 1 5 4 4 1 4 4 4 5 2 1 4 4 3 2 2 1 1 1 1 1 1 1 2 1 2 2 1 3 1 1 1 4 2 3 2 1 2 2 1 3 2 2 1 1 2 3 2 3 1 1 2 6 5 4 5 5 5 5 4 5 4 5 5 4 5 5 4 4 5 5 4 5 5 5 5 5 3 5 5 5 5 4 5 22 1 NA 3 2 51 White 4 3 1 1 1 2 2.10 4.05 2.10 2.20 3.85 3.25 4.35 2.55 3.25 4.30 1.8 1.4 2.2 1.8 151 3.1 4.0 2.0 1.9 4.1 1.1 4.1 2.2 2.5 3.6 3.6 4.2 2.1 4.1 3.9 2.9 4.5 3.0 2.4 4.7
1003 1003001 4 5 4 2 4 2 4 2 5 5 5 5 4 4 2 4 3 4 4 4 5 4 4 4 4 2 5 4 2 2 4 5 2 4 4 4 2 4 2 2 4 5 4 4 4 4 4 4 2 4 5 5 4 4 2 2 2 4 4 2 4 5 2 4 5 4 4 4 2 2 5 5 4 4 4 4 5 4 2 2 2 4 2 4 5 2 5 4 2 2 4 5 4 4 4 4 4 4 2 5 4 4 2 2 2 4 4 2 4 5 4 4 2 4 5 4 5 1 5 4 5 4 1 4 2 4 2 2 4 4 2 4 2 4 2 2 4 2 4 5 4 5 2 4 4 2 2 2 4 4 4 5 5 4 2 1 2 4 1 5 4 4 2 4 5 2 5 4 4 4 4 4 2 5 2 2 4 2 4 4 4 4 4 4 2 3 4 4 4 4 2 4 1 4 4 2 5 2 4 4 4 2 3 2 3 4 4 1 2 2 2 3 3 1 5 4 3 1 2 3 2 3 2 2 2 2 1 1 3 2 2 2 2 3 3 2 4 2 1 2 5 5 5 3 4 5 5 5 5 2 5 5 5 5 5 3 5 5 5 4 5 4 5 5 5 4 5 5 5 4 5 5 23 1 NA 5 4 35 White 4 1 1 1 1 1 3.70 4.30 3.60 3.25 3.40 3.15 3.95 2.40 3.85 3.65 2.7 2.7 2.3 2.0 148 4.2 4.8 3.4 3.8 3.8 3.2 3.8 3.8 2.7 3.0 3.7 4.2 2.3 3.9 3.0 2.6 3.7 2.5 3.8 4.3
1003 1003002 4 4 2 3 4 3 2 2 3 5 5 4 1 4 5 3 3 4 4 4 4 5 1 4 5 3 3 2 3 5 3 4 2 4 4 3 2 4 3 5 5 4 2 5 5 3 2 2 3 4 5 4 2 3 4 3 3 3 3 4 5 4 1 4 4 3 3 3 4 5 4 4 2 5 4 3 4 3 4 5 4 5 1 4 2 4 3 3 3 5 4 5 1 5 3 3 4 2 3 4 5 5 4 4 4 3 3 2 3 4 5 5 4 3 4 3 3 4 3 3 5 5 3 2 4 3 5 4 2 3 4 5 3 3 4 4 5 5 3 3 5 4 3 3 4 5 5 3 2 3 5 5 4 4 5 4 3 2 3 3 4 4 3 4 5 5 3 4 4 3 5 4 3 5 4 3 5 4 1 4 5 5 3 4 4 3 3 3 3 3 5 5 2 4 3 4 4 3 2 3 4 4 3 3 2 4 3 2 3 1 3 3 4 4 4 3 4 2 3 4 4 4 3 2 3 5 5 1 4 2 2 5 4 3 4 4 3 3 4 4 4 4 4 4 4 5 5 4 4 3 4 5 5 4 5 4 5 4 4 4 5 4 5 5 5 4 4 4 5 4 4 4 22 0 NA 2 4 35 White 2 1 1 1 1 2 3.70 3.60 2.15 3.70 4.30 4.25 4.30 3.30 3.10 3.65 3.0 3.3 3.5 3.4 138 4.3 4.3 1.5 4.1 4.0 3.1 2.9 2.8 3.3 4.6 4.8 4.7 3.2 3.6 4.1 3.7 3.9 3.4 2.6 3.2
1004 1004001 2 5 4 4 4 2 4 4 4 5 2 5 4 5 4 3 4 4 5 5 2 4 3 3 5 4 5 4 5 5 4 4 4 3 4 3 4 4 4 4 2 5 4 4 5 4 2 5 5 5 4 4 4 4 4 2 4 3 4 2 2 4 3 3 3 3 4 2 3 4 2 4 4 5 5 4 4 4 5 2 2 5 2 5 3 4 5 4 4 2 2 5 1 5 4 4 4 4 5 5 4 4 5 3 4 1 5 5 2 5 4 5 4 5 5 1 5 5 5 4 1 4 4 5 2 1 5 5 4 5 3 5 2 5 5 1 5 4 1 5 2 4 4 5 5 2 5 5 2 3 4 4 4 4 4 2 5 2 2 1 4 4 2 4 4 2 5 2 1 2 2 4 2 4 4 2 5 5 2 2 5 5 4 4 5 2 5 4 4 2 2 4 4 4 5 1 2 3 5 5 3 2 4 4 4 1 1 1 3 5 2 3 1 5 2 4 4 4 4 1 4 4 3 1 4 2 2 1 3 5 1 3 1 5 4 5 5 2 4 1 4 5 5 5 4 5 5 5 4 5 5 5 4 5 4 5 5 5 4 4 5 5 5 4 3 4 5 5 5 3 5 5 18 1 NA 1 1 15 Asian/Hmong 4 3 4 3 3 1 2.85 4.25 3.55 4.25 4.00 2.30 4.50 3.75 3.55 3.85 3.9 1.9 4.1 1.9 147 2.4 4.5 3.3 4.1 4.1 3.3 4.0 3.8 4.4 3.9 3.1 4.3 3.5 4.3 4.3 1.5 4.7 4.0 2.8 3.4
1004 1004002 3 3 4 2 3 3 4 5 3 5 3 3 3 2 2 3 5 4 4 3 2 4 4 3 3 3 4 3 2 3 3 3 2 2 3 1 5 4 3 4 2 4 4 3 3 1 4 3 3 3 4 3 3 2 4 2 3 3 3 4 2 4 3 3 4 1 4 3 2 3 2 3 3 4 3 3 5 4 2 2 4 5 2 4 3 2 5 3 3 3 2 4 2 3 3 3 3 2 2 4 3 4 4 4 3 4 3 2 4 4 4 3 4 3 4 3 5 4 4 5 2 4 2 3 3 3 4 4 3 3 2 3 3 4 2 2 4 4 3 3 3 3 3 3 3 4 3 3 3 5 3 3 3 4 4 2 3 3 3 2 3 5 4 4 4 4 4 4 3 3 3 3 3 5 3 3 5 4 3 3 4 5 3 4 3 3 3 3 3 3 3 5 2 4 3 3 5 3 3 5 4 3 3 1 3 3 2 1 3 4 2 2 1 2 3 3 3 4 2 2 3 2 3 2 3 3 2 1 3 4 1 2 1 3 2 3 3 2 3 2 5 3 3 5 3 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 3 4 5 4 5 5 5 5 23 0 NA 2 1 15 asian american/hmong 4 2 6 2 3 2 2.45 3.90 3.20 2.75 3.25 3.05 3.85 3.25 3.50 3.40 2.9 2.2 3.0 1.8 149 2.7 3.6 3.0 2.8 3.1 2.2 4.2 3.4 2.7 3.4 3.0 3.8 3.1 3.8 3.2 3.1 3.9 3.4 3.2 3.6
head(esm %>% filter(Participant_ID == "1002001") %>% arrange(time_idx)) %>%
  knitr::kable(caption = "Example first 6 rows of the esm dataframe") %>%
  kable_styling() %>%
  column_spec(4, width_min = "1in") %>%
  scroll_box(width = "900px")
Example first 6 rows of the esm dataframe
Couple_ID Participant_ID time day time_idx day_idx mpa mna tipi_1 tipi_2 tipi_3 tipi_4 tipi_5 tipi_6 tipi_7 tipi_8 tipi_9 tipi_10 csi_happiness csi_general_6 csi_satisfaction_1 csi_satisfaction_4 partner_presence P_num tipi_extra tipi_agree tipi_consci tipi_neuro tipi_open csi_short
1002 1002001 0 2023-10-07 0 0 60 25 2 6 2 4 3 2 5 4 3 4 5 5 5 5 1 1 2.0 5.5 3.0 3.5 3.5 20
1002 1002001 1 2023-10-07 1 0 50 20 1 7 1 5 4 2 6 4 6 5 5 5 5 5 1 1 1.5 6.5 2.5 5.5 4.5 20
1002 1002001 2 2023-10-07 2 0 45 30 1 7 1 6 3 1 6 4 5 6 5 5 5 5 1 1 1.0 6.5 2.5 5.5 4.5 20
1002 1002001 3 2023-10-07 3 0 71 17 5 6 3 5 5 1 4 5 4 5 5 5 5 5 1 1 3.0 5.0 4.0 4.5 5.0 20
1002 1002001 4 2023-10-07 4 0 40 20 5 7 3 6 5 2 6 2 5 6 5 5 5 5 1 1 3.5 6.5 2.5 5.5 5.5 20
1002 1002001 0 2023-10-08 5 1 80 20 5 5 4 5 4 3 6 4 4 6 5 5 5 5 0 1 4.0 5.5 4.0 4.5 5.0 20
# retain only analytic variables
baseline <- baseline %>%
  select(Couple_ID, P_num, duration,
         age, sex, gender, sexuality, edu, ses, politics, religion, race_cat,
         panas_self_1:panas_self_20,
         self_neuro:partner_opena)
esm <- esm %>%
  select(Couple_ID, P_num, time_idx, day_idx, mpa, mna, partner_presence,
         tipi_extra:csi_short)

Research Question 1: Evidence of Assortative Mating

Hypothesis 1: Baseline Assortative Mating

At baseline, romantic partners are similar in their personality traits and general affects such that their scale scores are significantly and positively correlated.

# run function
h1_results <- h1_function(
  var_list = c(paste0("self_", 
                      c("pa", "na",
                        "agree", "compa", "polit", 
                        "consci", "indus", "order", 
                        "extra", "assert", "enthu", 
                        "neuro", "volat", "withd", 
                        "open", "intel", "opena"))),
  prof_list = data.frame(
    pa      = dict %>% filter(scale == "Self Positive Affect") %>% pull(var),
    na      = dict %>% filter(scale == "Self Negative Affect") %>% pull(var),
    panas   = paste0("panas_self_", 1:20),
    domains = paste0("self_", c("agree", "consci", "extra", "neuro", "open")),
    aspects = paste0("self_", c("compa", "polit", "indus", "order", "assert",
                                "enthu", "volat", "withd", "intel", "opena"))),
  .data = baseline)

# merge profile correlations back to dataframe
baseline <- merge(baseline, h1_results$profile_df, all = TRUE)

# print results
h1_results$bivariate %>% 
  knitr::kable(caption = "Bivariate between-partner correlation") %>% 
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Bivariate between-partner correlation
variable correlation p_value LL UL
self_pa 0.100 0.242 -0.068 0.263
self_na 0.179 0.036 0.012 0.336
self_agree 0.174 0.041 0.007 0.331
self_compa 0.111 0.195 -0.057 0.273
self_polit 0.154 0.071 -0.014 0.313
self_consci -0.005 0.953 -0.172 0.162
self_indus -0.005 0.949 -0.172 0.162
self_order 0.032 0.710 -0.136 0.198
self_extra 0.129 0.131 -0.039 0.290
self_assert 0.151 0.078 -0.017 0.310
self_enthu -0.008 0.923 -0.175 0.159
self_neuro -0.084 0.326 -0.248 0.084
self_volat -0.216 0.011 -0.370 -0.051
self_withd 0.087 0.308 -0.081 0.251
self_open 0.238 0.005 0.074 0.389
self_intel -0.076 0.374 -0.240 0.092
self_opena 0.300 0.000 0.140 0.445
h1_results$profile %>% 
  knitr::kable(
    caption = "Proportion of signficant between-partner profile correlations") %>% 
  kable_styling("striped")
Proportion of signficant between-partner profile correlations
profile raw centered standardized
pa 0.075 0.08824 0.05797
na 0.20202 0.10667 0.0942
panas 0.54098 0.16667 0.16667
domains 0.10084 0.02439 0.02899
aspects 0.23932 0.12162 0.12319

Hypothesis 2: Perceived vs. Actual

At baseline, perceived similarity is stronger than actual similarity

# run function
h2_results <- h2_function(
  perception_list = c("pa", "na",
                      "agree", "compa", "polit", 
                      "consci", "indus", "order", 
                      "extra", "assert", "enthu", 
                      "neuro", "volat", "withd", 
                      "open", "intel", "opena"),
  .data = baseline
)

# view results
h2_results$similarity_df %>%
  knitr::kable(
    caption = "Actual and perceived similarities as bivariate correlations"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Actual and perceived similarities as bivariate correlations
similarity personality correlation p-value
actual pa 0.1 [-0.068 - 0.263] 0.242
P1-perceived pa 0.508 [0.372 - 0.622] 0
P2-perceived pa 0.448 [0.304 - 0.573] 0
actual na 0.179 [0.012 - 0.336] 0.036
P1-perceived na 0.426 [0.279 - 0.554] 0
P2-perceived na 0.439 [0.293 - 0.565] 0
actual agree 0.174 [0.007 - 0.331] 0.041
P1-perceived agree 0.343 [0.187 - 0.483] 0
P2-perceived agree 0.315 [0.156 - 0.458] 0
actual compa 0.111 [-0.057 - 0.273] 0.195
P1-perceived compa 0.321 [0.162 - 0.463] 0
P2-perceived compa 0.315 [0.157 - 0.458] 0
actual polit 0.154 [-0.014 - 0.313] 0.071
P1-perceived polit 0.216 [0.051 - 0.37] 0.011
P2-perceived polit 0.204 [0.038 - 0.359] 0.016
actual consci -0.005 [-0.172 - 0.162] 0.953
P1-perceived consci -0.07 [-0.234 - 0.099] 0.417
P2-perceived consci -0.068 [-0.233 - 0.1] 0.428
actual indus -0.005 [-0.172 - 0.162] 0.949
P1-perceived indus -0.093 [-0.256 - 0.075] 0.278
P2-perceived indus -0.039 [-0.205 - 0.129] 0.646
actual order 0.032 [-0.136 - 0.198] 0.71
P1-perceived order 0.041 [-0.127 - 0.207] 0.631
P2-perceived order -0.063 [-0.228 - 0.105] 0.46
actual extra 0.129 [-0.039 - 0.29] 0.131
P1-perceived extra 0.153 [-0.014 - 0.312] 0.073
P2-perceived extra 0.21 [0.044 - 0.364] 0.013
actual assert 0.151 [-0.017 - 0.31] 0.078
P1-perceived assert 0.034 [-0.134 - 0.2] 0.692
P2-perceived assert 0.123 [-0.045 - 0.285] 0.149
actual enthu -0.008 [-0.175 - 0.159] 0.923
P1-perceived enthu 0.147 [-0.021 - 0.306] 0.086
P2-perceived enthu 0.203 [0.037 - 0.358] 0.017
actual neuro -0.084 [-0.248 - 0.084] 0.326
P1-perceived neuro -0.186 [-0.343 - -0.02] 0.029
P2-perceived neuro -0.029 [-0.195 - 0.139] 0.737
actual volat -0.216 [-0.37 - -0.051] 0.011
P1-perceived volat -0.247 [-0.398 - -0.083] 0.003
P2-perceived volat -0.122 [-0.283 - 0.046] 0.154
actual withd 0.087 [-0.081 - 0.251] 0.308
P1-perceived withd -0.067 [-0.232 - 0.101] 0.434
P2-perceived withd 0.051 [-0.117 - 0.216] 0.556
actual open 0.238 [0.074 - 0.389] 0.005
P1-perceived open 0.327 [0.169 - 0.468] 0
P2-perceived open 0.362 [0.208 - 0.499] 0
actual intel -0.076 [-0.24 - 0.092] 0.374
P1-perceived intel 0.091 [-0.077 - 0.254] 0.287
P2-perceived intel 0.087 [-0.081 - 0.25] 0.311
actual opena 0.3 [0.14 - 0.445] 0
P1-perceived opena 0.303 [0.143 - 0.448] 0
P2-perceived opena 0.424 [0.277 - 0.552] 0
h2_results$compare_df %>%
  knitr::kable(
    caption = "Comparison between actual and perceived similarities"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Comparison between actual and perceived similarities
V1 V2 personality z_stat sig
actual P1-perceived pa -3.774 TRUE
actual P2-perceived pa -3.140 TRUE
P1-perceived P2-perceived pa 0.635 FALSE
actual P1-perceived na -2.254 TRUE
actual P2-perceived na -2.384 TRUE
P1-perceived P2-perceived na -0.130 FALSE
actual P1-perceived agree -1.495 FALSE
actual P2-perceived agree -1.238 FALSE
P1-perceived P2-perceived agree 0.257 FALSE
actual P1-perceived compa -1.816 FALSE
actual P2-perceived compa -1.767 FALSE
P1-perceived P2-perceived compa 0.049 FALSE
actual P1-perceived polit -0.527 FALSE
actual P2-perceived polit -0.426 FALSE
P1-perceived P2-perceived polit 0.101 FALSE
actual P1-perceived consci 0.531 FALSE
actual P2-perceived consci 0.518 FALSE
P1-perceived P2-perceived consci -0.012 FALSE
actual P1-perceived indus 0.721 FALSE
actual P2-perceived indus 0.279 FALSE
P1-perceived P2-perceived indus -0.442 FALSE
actual P1-perceived order -0.077 FALSE
actual P2-perceived order 0.784 FALSE
P1-perceived P2-perceived order 0.861 FALSE
actual P1-perceived extra -0.202 FALSE
actual P2-perceived extra -0.683 FALSE
P1-perceived P2-perceived extra -0.481 FALSE
actual P1-perceived assert 0.966 FALSE
actual P2-perceived assert 0.227 FALSE
P1-perceived P2-perceived assert -0.740 FALSE
actual P1-perceived enthu -1.282 FALSE
actual P2-perceived enthu -1.761 FALSE
P1-perceived P2-perceived enthu -0.478 FALSE
actual P1-perceived neuro 0.857 FALSE
actual P2-perceived neuro -0.456 FALSE
P1-perceived P2-perceived neuro -1.313 FALSE
actual P1-perceived volat 0.270 FALSE
actual P2-perceived volat -0.797 FALSE
P1-perceived P2-perceived volat -1.067 FALSE
actual P1-perceived withd 1.273 FALSE
actual P2-perceived withd 0.303 FALSE
P1-perceived P2-perceived withd -0.969 FALSE
actual P1-perceived open -0.794 FALSE
actual P2-perceived open -1.127 FALSE
P1-perceived P2-perceived open -0.333 FALSE
actual P1-perceived intel -1.378 FALSE
actual P2-perceived intel -1.343 FALSE
P1-perceived P2-perceived intel 0.036 FALSE
actual P1-perceived opena -0.029 FALSE
actual P2-perceived opena -1.177 FALSE
P1-perceived P2-perceived opena -1.148 FALSE
# plot
similarity_df <- h2_results$similarity_df
similarity_df$personality <- rep(
  c(
    "Positive Affect", "Negative Affect",
    "Agreeableness", "Compassion", "Politeness",
    "Conscientiousness", "Industriousness", "Orderliness",
    "Extraversion", "Assertiveness", "Enthusiasm",
    "Neuroticism", "Volatility", "Withdrawal",
    "Openness", "Intellect", "Openness Aspect"),
  each = 3)
plot_forest(
  perception_list = c("pa", "na",
                      "agree", "compa", "polit", 
                      "consci", "indus", "order", 
                      "extra", "assert", "enthu", 
                      "neuro", "volat", "withd", 
                      "open", "intel", "opena"),
  similarity_df = similarity_df)

Hypothesis 3: Dynamic Assortative Mating

Dynamically, romantic partners are similar in their momentary variability on personality and affective states.

# run function
h3_results <- h3_function(
  var_list = c("mpa", "mna", 
               paste0("tipi_", c("agree", "consci", "extra", "neuro", "open"))),
  .data = esm,
  .dict = dict %>% filter(data == "esm")
)

# merge within-person indices back to baseline dataframe
baseline <- merge(baseline,
                  h3_results$within_df)

# show results
h3_results$cor_tab %>% 
  knitr::kable(
    caption = "Dynamic Between-Partner Correlations") %>% 
  kable_styling("striped") %>%
  scroll_box(width = "900px")
Dynamic Between-Partner Correlations
variable r SD p SD LL SD UL SD r RVI p RVI LL RVI UL RVI r MSSD p MSSD LL MSSD UL MSSD r RMSSD p RMSSD LL RMSSD UL RMSSD r avg proportion sig n avg
mpa 0.195 0.022 0.029 0.351 0.19 0.027 0.022 0.348 0.18 0.035 0.013 0.337 0.299 0 0.137 0.446 0.211 0.203 26.13
mna 0.227 0.007 0.062 0.38 0.113 0.191 -0.057 0.277 0.133 0.119 -0.035 0.294 0.18 0.037 0.011 0.338 0.133 0.116 26.13
tipi_agree 0.264 0.002 0.101 0.413 0.2 0.019 0.033 0.355 0.196 0.021 0.03 0.352 0.127 0.14 -0.042 0.288 0.134 0.119 26.087
tipi_consci 0.079 0.355 -0.089 0.243 0.077 0.367 -0.091 0.241 0.192 0.024 0.026 0.348 0.097 0.258 -0.071 0.26 0.029 0.051 26.087
tipi_extra 0.206 0.015 0.04 0.361 0.268 0.001 0.105 0.416 0.186 0.029 0.02 0.343 0.366 0 0.212 0.503 0.132 0.117 26.08
tipi_neuro 0.239 0.005 0.075 0.391 0.149 0.08 -0.018 0.309 0.239 0.005 0.075 0.391 0.083 0.334 -0.085 0.247 0.124 0.104 26.072
tipi_open 0.203 0.017 0.037 0.358 0.166 0.052 -0.001 0.325 0.148 0.082 -0.019 0.308 0.114 0.184 -0.054 0.277 0.074 0.095 26.058

Research Question 2: Benefits of Assortative Mating

Hypothesis 4: Baseline Benefits

At baseline, partner similarity in self-reported personality traits and general affect is associated with enhanced relationship quality

# run function
h4_results <- h4_function(
  var_list = c(paste0("self_", 
                      c("pa", "na",
                        "agree", "compa", "polit", 
                        "consci", "indus", "order", 
                        "extra", "assert", "enthu", 
                        "neuro", "volat", "withd", 
                        "open", "intel", "opena"))),
  prof_list = c("pa", "na", "panas", "domains", "aspects"),
  quality_var = "csi_overall",
  .data = baseline
)

# results
h4_results$interaction_tab %>%
  knitr::kable(
    caption = "Multiple Regression Models with Interaction Effects"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Multiple Regression Models with Interaction Effects
personality participant actor_est actor_tval actor_pval partner_est partner_tval partner_pval int_est int_tval int_pval
self_pa P1 16.74 0.806 0.422 9.556 0.469 0.64 -3.152 -0.538 0.592
self_pa P2 6.417 0.296 0.768 -3.258 -0.148 0.883 0.35 0.056 0.955
self_na P1 3.401 0.481 0.631 5.98 0.816 0.416 -3.883 -1.361 0.176
self_na P2 7.845 1.021 0.309 10.694 1.443 0.151 -6.428 -2.148 0.033
self_agree P1 10.377 0.333 0.74 2.13 0.065 0.949 1.288 0.159 0.874
self_agree P2 4.926 0.135 0.892 -3.804 -0.11 0.912 2.376 0.265 0.791
self_compa P1 -0.584 -0.032 0.975 -14.426 -0.73 0.467 3.737 0.806 0.421
self_compa P2 3.537 0.165 0.869 1.945 0.098 0.922 1.353 0.269 0.788
self_polit P1 52.686 2.104 0.037 53.333 2.167 0.032 -11.457 -1.79 0.076
self_polit P2 9.649 0.342 0.733 4.645 0.162 0.872 -0.694 -0.095 0.925
self_consci P1 11.358 0.5 0.618 3.95 0.174 0.862 -1.823 -0.271 0.787
self_consci P2 15.523 0.627 0.532 13.572 0.549 0.584 -4.459 -0.608 0.544
self_indus P1 13.292 1.062 0.29 8.475 0.638 0.525 -3.098 -0.764 0.446
self_indus P2 14.517 1.008 0.315 11.135 0.821 0.413 -3.778 -0.859 0.392
self_order P1 -6.21 -0.35 0.727 -11.471 -0.654 0.514 2.737 0.556 0.579
self_order P2 13.007 0.686 0.494 13.718 0.714 0.476 -4.293 -0.806 0.421
self_extra P1 12.937 0.646 0.519 5.26 0.257 0.798 -1.581 -0.269 0.789
self_extra P2 11.494 0.541 0.589 5.904 0.285 0.776 -0.275 -0.045 0.964
self_assert P1 23.805 1.918 0.057 20.072 1.649 0.102 -6.912 -1.852 0.066
self_assert P2 26.689 2.07 0.04 25.607 1.948 0.054 -6.811 -1.722 0.087
self_enthu P1 -1.856 -0.117 0.907 -8.725 -0.508 0.612 3.118 0.699 0.486
self_enthu P2 -4.276 -0.239 0.811 -10.246 -0.623 0.535 4.165 0.896 0.372
self_neuro P1 11.447 1.066 0.288 11.749 1.095 0.275 -5.411 -1.545 0.125
self_neuro P2 11.183 0.991 0.323 9.773 0.865 0.388 -5.81 -1.577 0.117
self_volat P1 -1.86 -0.279 0.78 -2.727 -0.379 0.705 -0.822 -0.355 0.723
self_volat P2 0.697 0.091 0.928 -0.409 -0.058 0.954 -2.092 -0.848 0.398
self_withd P1 16.106 1.446 0.151 18.029 1.659 0.1 -6.232 -1.827 0.07
self_withd P2 15.772 1.374 0.172 14.286 1.214 0.227 -6.325 -1.755 0.081
self_open P1 -1.249 -0.047 0.962 -6.007 -0.223 0.824 1.729 0.252 0.802
self_open P2 9.917 0.352 0.725 5.378 0.195 0.846 -0.309 -0.043 0.966
self_intel P1 4.974 0.266 0.791 -2.294 -0.118 0.906 0.758 0.155 0.877
self_intel P2 43.051 2.101 0.038 39.947 2.028 0.045 -9.13 -1.777 0.078
self_opena P1 -11.229 -0.702 0.484 -8.725 -0.523 0.602 2.827 0.669 0.505
self_opena P2 -9.168 -0.521 0.604 -12.55 -0.743 0.459 3.838 0.86 0.392
h4_results$difference_tab %>%
  knitr::kable(
    caption = "Simple Regression Model with Difference Score"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Simple Regression Model with Difference Score
personality participant diff_est diff_tval diff_pval
self_pa P1 0.86 0.236 0.814
self_pa P2 1.847 0.471 0.639
self_na P1 -3.254 -1.126 0.262
self_na P2 -1.011 -0.323 0.747
self_agree P1 -5.408 -1.126 0.262
self_agree P2 -8.118 -1.576 0.117
self_compa P1 -2.705 -0.811 0.419
self_compa P2 -7.995 -2.26 0.025
self_polit P1 -3.094 -0.761 0.448
self_polit P2 -2.072 -0.472 0.638
self_consci P1 0.021 0.005 0.996
self_consci P2 2.548 0.618 0.538
self_indus P1 0.03 0.01 0.992
self_indus P2 -1.286 -0.406 0.686
self_order P1 -0.724 -0.208 0.835
self_order P2 4.23 1.134 0.259
self_extra P1 -4.466 -1.128 0.261
self_extra P2 -10.51 -2.509 0.013
self_assert P1 0.661 0.202 0.841
self_assert P2 -1.008 -0.285 0.776
self_enthu P1 -2.271 -0.771 0.442
self_enthu P2 -7.397 -2.373 0.019
self_neuro P1 4.165 1.528 0.129
self_neuro P2 4.264 1.45 0.149
self_volat P1 0.227 0.106 0.916
self_volat P2 2.095 0.91 0.364
self_withd P1 4.545 1.577 0.117
self_withd P2 4.838 1.558 0.122
self_open P1 -0.883 -0.208 0.835
self_open P2 -4.888 -1.075 0.284
self_intel P1 -0.888 -0.296 0.767
self_intel P2 0.579 0.179 0.858
self_opena P1 4.251 1.289 0.2
self_opena P2 -1.853 -0.519 0.605
h4_results$profile_tab %>%
  knitr::kable(
    caption = "Simple Regression Model with Profile Similarity"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Simple Regression Model with Profile Similarity
profile participant raw_est raw_tval raw_pval cen_est cen_tval cen_pval std_est std_tval std_pval
pa P1 -4.544 -1.017 0.311 -7.999 -1.915 0.058 -8.348 -2.03 0.044
pa P2 -7.173 -1.478 0.142 -5.646 -1.245 0.215 -3.97 -0.885 0.378
na P1 4.314 1.006 0.316 1.451 0.376 0.708 0.82 0.212 0.832
na P2 0.816 0.174 0.863 -1.783 -0.428 0.669 -2.17 -0.521 0.603
panas P1 5.393 1.325 0.187 -7.325 -1.593 0.114 -8.679 -1.849 0.067
panas P2 4.126 0.924 0.357 -12.276 -2.511 0.013 -11.931 -2.377 0.019
domains P1 2.087 0.795 0.428 -2.629 -1.089 0.278 -2.475 -0.975 0.331
domains P2 5.051 1.804 0.073 -3.77 -1.455 0.148 -3.477 -1.274 0.205
aspects P1 5.814 1.595 0.113 -2.288 -0.714 0.476 -2.609 -0.78 0.437
aspects P2 8.328 2.136 0.035 -4.48 -1.304 0.194 -4.597 -1.28 0.203

Simple slope analysis for significant interaction effects

# Negative Affect - P2 Satisfaction
ss_wide_df <- baseline %>%
  pivot_wider(id_cols = "Couple_ID",
              names_from = "P_num",
              values_from = c("self_na", "csi_overall"))
nice_slopes(
  data = ss_wide_df,
  response = "csi_overall_2",
  predictor = "self_na_2",
  moderator = "self_na_1") %>%
  knitr::kable(
    caption = "Simple slope analysis"
  ) %>% 
  kableExtra::kable_styling()
Simple slope analysis
Dependent Variable Predictor (+/-1 SD) df B t p sr2 CI_lower CI_upper
csi_overall_2 self_na_2 (LOW-self_na_1) 134 -0.068 -0.57 0.569 0.002 0.000 0.016
csi_overall_2 self_na_2 (MEAN-self_na_1) 134 -0.226 -2.73 0.007 0.048 0.000 0.115
csi_overall_2 self_na_2 (HIGH-self_na_1) 134 -0.384 -3.80 0.000 0.093 0.003 0.183

Hypothesis 5: APIM Actual Similarities

# run function
h5_results <- h5_function(
  var_list = c("pa", "na",
               "agree", "compa", "polit", 
               "consci", "indus", "order", 
               "extra", "assert", "enthu", 
               "neuro", "volat", "withd", 
               "open", "intel", "opena"),
  quality_var = "csi_overall",
  .data = baseline
)

# view results
h5_results$actual %>%
  knitr::kable(
    caption = "Standardized solutions for APIM models with actual similarity"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Standardized solutions for APIM models with actual similarity
lhs op rhs label est.std se z pvalue ci.lower ci.upper
csi_overall_1 ~ self_pa_1 a1 0.150 0.084 1.786 0.074 -0.015 0.315
csi_overall_2 ~ self_pa_2 a2 0.222 0.081 2.733 0.006 0.063 0.382
csi_overall_2 ~ self_pa_1 p12 -0.045 0.084 -0.537 0.591 -0.209 0.119
csi_overall_1 ~ self_pa_2 p21 -0.041 0.084 -0.486 0.627 -0.207 0.125
csi_overall_1 ~ pa_diff d1 0.034 0.084 0.397 0.691 -0.132 0.199
csi_overall_2 ~ pa_diff d2 0.039 0.083 0.465 0.642 -0.124 0.202
csi_overall_1 ~ self_na_1 a1 -0.220 0.085 -2.598 0.009 -0.386 -0.054
csi_overall_2 ~ self_na_2 a2 -0.263 0.079 -3.306 0.001 -0.418 -0.107
csi_overall_2 ~ self_na_1 p12 -0.179 0.084 -2.138 0.033 -0.343 -0.015
csi_overall_1 ~ self_na_2 p21 -0.121 0.083 -1.458 0.145 -0.284 0.042
csi_overall_1 ~ na_diff d1 -0.012 0.086 -0.139 0.889 -0.181 0.157
csi_overall_2 ~ na_diff d2 0.066 0.084 0.783 0.434 -0.099 0.232
csi_overall_1 ~ self_agree_1 a1 0.356 0.077 4.608 0.000 0.205 0.508
csi_overall_2 ~ self_agree_2 a2 0.266 0.086 3.098 0.002 0.098 0.434
csi_overall_2 ~ self_agree_1 p12 0.120 0.084 1.432 0.152 -0.044 0.285
csi_overall_1 ~ self_agree_2 p21 0.111 0.085 1.304 0.192 -0.056 0.278
csi_overall_1 ~ agree_diff d1 -0.123 0.085 -1.443 0.149 -0.290 0.044
csi_overall_2 ~ agree_diff d2 -0.066 0.088 -0.745 0.456 -0.239 0.107
csi_overall_1 ~ self_compa_1 a1 0.369 0.077 4.787 0.000 0.218 0.520
csi_overall_2 ~ self_compa_2 a2 0.212 0.090 2.344 0.019 0.035 0.388
csi_overall_2 ~ self_compa_1 p12 0.190 0.082 2.326 0.020 0.030 0.350
csi_overall_1 ~ self_compa_2 p21 -0.026 0.091 -0.281 0.778 -0.204 0.153
csi_overall_1 ~ compa_diff d1 -0.144 0.091 -1.580 0.114 -0.323 0.035
csi_overall_2 ~ compa_diff d2 -0.127 0.092 -1.375 0.169 -0.307 0.054
csi_overall_1 ~ self_polit_1 a1 0.228 0.081 2.813 0.005 0.069 0.387
csi_overall_2 ~ self_polit_2 a2 0.161 0.085 1.894 0.058 -0.006 0.328
csi_overall_2 ~ self_polit_1 p12 0.049 0.087 0.565 0.572 -0.122 0.220
csi_overall_1 ~ self_polit_2 p21 0.246 0.080 3.084 0.002 0.090 0.402
csi_overall_1 ~ polit_diff d1 0.043 0.084 0.512 0.608 -0.121 0.207
csi_overall_2 ~ polit_diff d2 0.005 0.088 0.053 0.957 -0.168 0.177
csi_overall_1 ~ self_consci_1 a1 0.137 0.083 1.647 0.100 -0.026 0.301
csi_overall_2 ~ self_consci_2 a2 0.020 0.085 0.231 0.817 -0.147 0.186
csi_overall_2 ~ self_consci_1 p12 -0.034 0.085 -0.404 0.686 -0.201 0.132
csi_overall_1 ~ self_consci_2 p21 -0.064 0.084 -0.755 0.450 -0.228 0.101
csi_overall_1 ~ consci_diff d1 -0.011 0.084 -0.127 0.899 -0.176 0.155
csi_overall_2 ~ consci_diff d2 0.056 0.085 0.657 0.511 -0.111 0.223
csi_overall_1 ~ self_indus_1 a1 0.132 0.085 1.548 0.122 -0.035 0.299
csi_overall_2 ~ self_indus_2 a2 0.075 0.087 0.867 0.386 -0.095 0.245
csi_overall_2 ~ self_indus_1 p12 -0.003 0.087 -0.039 0.969 -0.173 0.166
csi_overall_1 ~ self_indus_2 p21 -0.063 0.086 -0.733 0.463 -0.232 0.106
csi_overall_1 ~ indus_diff d1 -0.039 0.088 -0.444 0.657 -0.212 0.133
csi_overall_2 ~ indus_diff d2 -0.018 0.089 -0.202 0.840 -0.192 0.156
csi_overall_1 ~ self_order_1 a1 0.106 0.084 1.260 0.207 -0.059 0.272
csi_overall_2 ~ self_order_2 a2 -0.053 0.085 -0.629 0.529 -0.219 0.113
csi_overall_2 ~ self_order_1 p12 -0.036 0.085 -0.427 0.669 -0.203 0.130
csi_overall_1 ~ self_order_2 p21 -0.059 0.085 -0.692 0.489 -0.225 0.107
csi_overall_1 ~ order_diff d1 -0.013 0.085 -0.149 0.881 -0.180 0.154
csi_overall_2 ~ order_diff d2 0.089 0.085 1.048 0.295 -0.077 0.255
csi_overall_1 ~ self_extra_1 a1 0.190 0.083 2.300 0.021 0.028 0.352
csi_overall_2 ~ self_extra_2 a2 0.270 0.078 3.450 0.001 0.117 0.424
csi_overall_2 ~ self_extra_1 p12 0.110 0.080 1.382 0.167 -0.046 0.266
csi_overall_1 ~ self_extra_2 p21 -0.021 0.085 -0.244 0.807 -0.188 0.146
csi_overall_1 ~ extra_diff d1 -0.087 0.084 -1.026 0.305 -0.252 0.079
csi_overall_2 ~ extra_diff d2 -0.155 0.080 -1.938 0.053 -0.311 0.002
csi_overall_1 ~ self_assert_1 a1 0.047 0.087 0.543 0.587 -0.123 0.217
csi_overall_2 ~ self_assert_2 a2 0.164 0.083 1.977 0.048 0.001 0.327
csi_overall_2 ~ self_assert_1 p12 0.104 0.085 1.229 0.219 -0.062 0.270
csi_overall_1 ~ self_assert_2 p21 -0.073 0.086 -0.851 0.395 -0.241 0.095
csi_overall_1 ~ assert_diff d1 0.021 0.086 0.244 0.807 -0.147 0.189
csi_overall_2 ~ assert_diff d2 -0.001 0.084 -0.014 0.989 -0.166 0.164
csi_overall_1 ~ self_enthu_1 a1 0.288 0.078 3.684 0.000 0.135 0.440
csi_overall_2 ~ self_enthu_2 a2 0.332 0.079 4.204 0.000 0.177 0.487
csi_overall_2 ~ self_enthu_1 p12 0.133 0.078 1.710 0.087 -0.019 0.286
csi_overall_1 ~ self_enthu_2 p21 0.086 0.086 1.000 0.317 -0.082 0.254
csi_overall_1 ~ enthu_diff d1 -0.063 0.086 -0.734 0.463 -0.233 0.106
csi_overall_2 ~ enthu_diff d2 -0.099 0.083 -1.193 0.233 -0.262 0.064
csi_overall_1 ~ self_neuro_1 a1 -0.159 0.082 -1.949 0.051 -0.320 0.001
csi_overall_2 ~ self_neuro_2 a2 -0.194 0.080 -2.424 0.015 -0.350 -0.037
csi_overall_2 ~ self_neuro_1 p12 -0.239 0.079 -3.033 0.002 -0.393 -0.085
csi_overall_1 ~ self_neuro_2 p21 -0.146 0.082 -1.775 0.076 -0.307 0.015
csi_overall_1 ~ neuro_diff d1 0.116 0.082 1.412 0.158 -0.045 0.278
csi_overall_2 ~ neuro_diff d2 0.105 0.081 1.306 0.191 -0.053 0.263
csi_overall_1 ~ self_volat_1 a1 -0.171 0.084 -2.030 0.042 -0.336 -0.006
csi_overall_2 ~ self_volat_2 a2 -0.203 0.083 -2.447 0.014 -0.365 -0.040
csi_overall_2 ~ self_volat_1 p12 -0.248 0.082 -3.039 0.002 -0.409 -0.088
csi_overall_1 ~ self_volat_2 p21 -0.219 0.084 -2.610 0.009 -0.383 -0.054
csi_overall_1 ~ volat_diff d1 -0.003 0.085 -0.041 0.968 -0.170 0.163
csi_overall_2 ~ volat_diff d2 0.082 0.083 0.979 0.328 -0.082 0.245
csi_overall_1 ~ self_withd_1 a1 -0.121 0.084 -1.448 0.148 -0.286 0.043
csi_overall_2 ~ self_withd_2 a2 -0.128 0.083 -1.546 0.122 -0.290 0.034
csi_overall_2 ~ self_withd_1 p12 -0.184 0.082 -2.256 0.024 -0.344 -0.024
csi_overall_1 ~ self_withd_2 p21 -0.038 0.085 -0.449 0.653 -0.204 0.128
csi_overall_1 ~ withd_diff d1 0.113 0.085 1.338 0.181 -0.053 0.279
csi_overall_2 ~ withd_diff d2 0.090 0.083 1.085 0.278 -0.073 0.254
csi_overall_1 ~ self_open_1 a1 0.120 0.087 1.385 0.166 -0.050 0.290
csi_overall_2 ~ self_open_2 a2 0.228 0.086 2.658 0.008 0.060 0.395
csi_overall_2 ~ self_open_1 p12 0.090 0.084 1.066 0.287 -0.075 0.255
csi_overall_1 ~ self_open_2 p21 0.017 0.090 0.186 0.852 -0.160 0.194
csi_overall_1 ~ open_diff d1 -0.015 0.088 -0.174 0.862 -0.187 0.157
csi_overall_2 ~ open_diff d2 -0.034 0.085 -0.398 0.691 -0.201 0.133
csi_overall_1 ~ self_intel_1 a1 0.208 0.082 2.551 0.011 0.048 0.368
csi_overall_2 ~ self_intel_2 a2 0.264 0.084 3.141 0.002 0.099 0.428
csi_overall_2 ~ self_intel_1 p12 0.134 0.081 1.642 0.101 -0.026 0.293
csi_overall_1 ~ self_intel_2 p21 0.017 0.088 0.194 0.846 -0.156 0.190
csi_overall_1 ~ intel_diff d1 -0.027 0.088 -0.309 0.757 -0.199 0.145
csi_overall_2 ~ intel_diff d2 0.095 0.086 1.108 0.268 -0.073 0.264
csi_overall_1 ~ self_opena_1 a1 -0.029 0.088 -0.327 0.743 -0.201 0.144
csi_overall_2 ~ self_opena_2 a2 0.200 0.093 2.157 0.031 0.018 0.381
csi_overall_2 ~ self_opena_1 p12 0.049 0.087 0.557 0.578 -0.122 0.220
csi_overall_1 ~ self_opena_2 p21 0.142 0.094 1.512 0.131 -0.042 0.326
csi_overall_1 ~ opena_diff d1 0.161 0.090 1.798 0.072 -0.015 0.337
csi_overall_2 ~ opena_diff d2 0.034 0.090 0.381 0.703 -0.142 0.210
h5_results$perceived_p1 %>%
  knitr::kable(
    caption = "Standardized solutions for APIM models with P1-perceived similarity"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Standardized solutions for APIM models with P1-perceived similarity
perception lhs op rhs label est.std se z pvalue ci.lower ci.upper
P1 csi_overall_1 ~ self_pa_1 a1 0.042 0.098 0.429 0.668 -0.149 0.233
P1 csi_overall_2 ~ partner_pa_1 ap1 0.261 0.092 2.835 0.005 0.080 0.441
P1 csi_overall_2 ~ self_pa_1 p12 -0.203 0.094 -2.150 0.032 -0.388 -0.018
P1 csi_overall_1 ~ partner_pa_1 p21 0.141 0.096 1.473 0.141 -0.047 0.328
P1 csi_overall_1 ~ pa_diff_p1 d1 -0.134 0.084 -1.596 0.110 -0.300 0.031
P1 csi_overall_2 ~ pa_diff_p1 d2 -0.202 0.082 -2.469 0.014 -0.362 -0.042
P1 csi_overall_1 ~ self_na_1 a1 -0.106 0.110 -0.971 0.331 -0.321 0.108
P1 csi_overall_2 ~ partner_na_1 ap1 0.053 0.098 0.546 0.585 -0.138 0.244
P1 csi_overall_2 ~ self_na_1 p12 -0.203 0.112 -1.815 0.069 -0.422 0.016
P1 csi_overall_1 ~ partner_na_1 p21 -0.233 0.093 -2.499 0.012 -0.415 -0.050
P1 csi_overall_1 ~ na_diff_p1 d1 -0.079 0.099 -0.793 0.428 -0.274 0.116
P1 csi_overall_2 ~ na_diff_p1 d2 -0.052 0.102 -0.513 0.608 -0.253 0.148
P1 csi_overall_1 ~ self_agree_1 a1 0.246 0.077 3.183 0.001 0.095 0.398
P1 csi_overall_2 ~ partner_agree_1 ap1 0.097 0.094 1.035 0.301 -0.087 0.281
P1 csi_overall_2 ~ self_agree_1 p12 0.115 0.088 1.305 0.192 -0.058 0.288
P1 csi_overall_1 ~ partner_agree_1 p21 0.287 0.082 3.513 0.000 0.127 0.447
P1 csi_overall_1 ~ agree_diff_p1 d1 -0.131 0.079 -1.669 0.095 -0.286 0.023
P1 csi_overall_2 ~ agree_diff_p1 d2 -0.095 0.088 -1.078 0.281 -0.268 0.078
P1 csi_overall_1 ~ self_compa_1 a1 0.315 0.081 3.873 0.000 0.156 0.474
P1 csi_overall_2 ~ partner_compa_1 ap1 -0.004 0.106 -0.038 0.969 -0.212 0.204
P1 csi_overall_2 ~ self_compa_1 p12 0.199 0.088 2.257 0.024 0.026 0.371
P1 csi_overall_1 ~ partner_compa_1 p21 0.097 0.100 0.968 0.333 -0.099 0.293
P1 csi_overall_1 ~ compa_diff_p1 d1 -0.161 0.095 -1.706 0.088 -0.347 0.024
P1 csi_overall_2 ~ compa_diff_p1 d2 -0.193 0.099 -1.941 0.052 -0.387 0.002
P1 csi_overall_1 ~ self_polit_1 a1 0.148 0.082 1.818 0.069 -0.012 0.308
P1 csi_overall_2 ~ partner_polit_1 ap1 0.120 0.086 1.398 0.162 -0.048 0.288
P1 csi_overall_2 ~ self_polit_1 p12 0.047 0.093 0.506 0.613 -0.135 0.229
P1 csi_overall_1 ~ partner_polit_1 p21 0.414 0.070 5.905 0.000 0.277 0.552
P1 csi_overall_1 ~ polit_diff_p1 d1 -0.045 0.081 -0.559 0.576 -0.203 0.113
P1 csi_overall_2 ~ polit_diff_p1 d2 0.000 0.091 0.001 1.000 -0.179 0.179
P1 csi_overall_1 ~ self_consci_1 a1 0.142 0.082 1.730 0.084 -0.019 0.303
P1 csi_overall_2 ~ partner_consci_1 ap1 -0.001 0.085 -0.012 0.990 -0.167 0.165
P1 csi_overall_2 ~ self_consci_1 p12 -0.035 0.084 -0.413 0.680 -0.200 0.130
P1 csi_overall_1 ~ partner_consci_1 p21 0.111 0.083 1.334 0.182 -0.052 0.274
P1 csi_overall_1 ~ consci_diff_p1 d1 -0.138 0.083 -1.671 0.095 -0.300 0.024
P1 csi_overall_2 ~ consci_diff_p1 d2 -0.159 0.084 -1.899 0.058 -0.323 0.005
P1 csi_overall_1 ~ self_indus_1 a1 0.106 0.084 1.265 0.206 -0.058 0.271
P1 csi_overall_2 ~ partner_indus_1 ap1 0.054 0.084 0.647 0.517 -0.110 0.219
P1 csi_overall_2 ~ self_indus_1 p12 -0.042 0.086 -0.488 0.626 -0.211 0.127
P1 csi_overall_1 ~ partner_indus_1 p21 0.189 0.081 2.341 0.019 0.031 0.348
P1 csi_overall_1 ~ indus_diff_p1 d1 -0.161 0.083 -1.941 0.052 -0.324 0.002
P1 csi_overall_2 ~ indus_diff_p1 d2 -0.177 0.085 -2.096 0.036 -0.343 -0.012
P1 csi_overall_1 ~ self_order_1 a1 0.120 0.085 1.421 0.155 -0.046 0.286
P1 csi_overall_2 ~ partner_order_1 ap1 -0.024 0.086 -0.284 0.777 -0.194 0.145
P1 csi_overall_2 ~ self_order_1 p12 -0.036 0.086 -0.419 0.675 -0.204 0.132
P1 csi_overall_1 ~ partner_order_1 p21 0.013 0.086 0.152 0.879 -0.155 0.181
P1 csi_overall_1 ~ order_diff_p1 d1 -0.106 0.086 -1.231 0.218 -0.274 0.063
P1 csi_overall_2 ~ order_diff_p1 d2 -0.066 0.087 -0.756 0.449 -0.236 0.105
P1 csi_overall_1 ~ self_extra_1 a1 0.184 0.085 2.173 0.030 0.018 0.350
P1 csi_overall_2 ~ partner_extra_1 ap1 0.177 0.081 2.182 0.029 0.018 0.337
P1 csi_overall_2 ~ self_extra_1 p12 0.092 0.084 1.093 0.275 -0.073 0.257
P1 csi_overall_1 ~ partner_extra_1 p21 0.101 0.084 1.203 0.229 -0.063 0.265
P1 csi_overall_1 ~ extra_diff_p1 d1 0.029 0.085 0.336 0.737 -0.138 0.195
P1 csi_overall_2 ~ extra_diff_p1 d2 -0.169 0.082 -2.048 0.041 -0.330 -0.007
P1 csi_overall_1 ~ self_assert_1 a1 0.039 0.089 0.435 0.663 -0.136 0.213
P1 csi_overall_2 ~ partner_assert_1 ap1 0.102 0.083 1.230 0.219 -0.061 0.266
P1 csi_overall_2 ~ self_assert_1 p12 0.098 0.087 1.124 0.261 -0.073 0.269
P1 csi_overall_1 ~ partner_assert_1 p21 -0.033 0.085 -0.384 0.701 -0.199 0.134
P1 csi_overall_1 ~ assert_diff_p1 d1 0.016 0.089 0.179 0.858 -0.158 0.190
P1 csi_overall_2 ~ assert_diff_p1 d2 -0.094 0.087 -1.084 0.279 -0.265 0.076
P1 csi_overall_1 ~ self_enthu_1 a1 0.246 0.078 3.135 0.002 0.092 0.399
P1 csi_overall_2 ~ partner_enthu_1 ap1 0.190 0.082 2.324 0.020 0.030 0.350
P1 csi_overall_2 ~ self_enthu_1 p12 0.074 0.082 0.906 0.365 -0.086 0.234
P1 csi_overall_1 ~ partner_enthu_1 p21 0.214 0.080 2.671 0.008 0.057 0.370
P1 csi_overall_1 ~ enthu_diff_p1 d1 -0.039 0.081 -0.480 0.631 -0.198 0.120
P1 csi_overall_2 ~ enthu_diff_p1 d2 -0.189 0.081 -2.331 0.020 -0.348 -0.030
P1 csi_overall_1 ~ self_neuro_1 a1 -0.242 0.078 -3.080 0.002 -0.396 -0.088
P1 csi_overall_2 ~ partner_neuro_1 ap1 -0.096 0.087 -1.104 0.270 -0.267 0.074
P1 csi_overall_2 ~ self_neuro_1 p12 -0.260 0.083 -3.117 0.002 -0.424 -0.097
P1 csi_overall_1 ~ partner_neuro_1 p21 -0.389 0.076 -5.107 0.000 -0.538 -0.240
P1 csi_overall_1 ~ neuro_diff_p1 d1 0.078 0.083 0.939 0.348 -0.085 0.241
P1 csi_overall_2 ~ neuro_diff_p1 d2 0.069 0.089 0.773 0.440 -0.106 0.244
P1 csi_overall_1 ~ self_volat_1 a1 -0.245 0.083 -2.950 0.003 -0.408 -0.082
P1 csi_overall_2 ~ partner_volat_1 ap1 -0.115 0.086 -1.336 0.182 -0.284 0.054
P1 csi_overall_2 ~ self_volat_1 p12 -0.253 0.090 -2.816 0.005 -0.429 -0.077
P1 csi_overall_1 ~ partner_volat_1 p21 -0.446 0.072 -6.154 0.000 -0.588 -0.304
P1 csi_overall_1 ~ volat_diff_p1 d1 0.025 0.085 0.299 0.765 -0.141 0.192
P1 csi_overall_2 ~ volat_diff_p1 d2 0.081 0.092 0.883 0.377 -0.099 0.262
P1 csi_overall_1 ~ self_withd_1 a1 -0.157 0.080 -1.952 0.051 -0.315 0.001
P1 csi_overall_2 ~ partner_withd_1 ap1 -0.041 0.088 -0.465 0.642 -0.214 0.132
P1 csi_overall_2 ~ self_withd_1 p12 -0.211 0.081 -2.597 0.009 -0.371 -0.052
P1 csi_overall_1 ~ partner_withd_1 p21 -0.221 0.084 -2.619 0.009 -0.386 -0.056
P1 csi_overall_1 ~ withd_diff_p1 d1 0.095 0.086 1.107 0.268 -0.073 0.263
P1 csi_overall_2 ~ withd_diff_p1 d2 0.060 0.088 0.688 0.491 -0.112 0.233
P1 csi_overall_1 ~ self_open_1 a1 0.032 0.086 0.374 0.708 -0.136 0.200
P1 csi_overall_2 ~ partner_open_1 ap1 0.220 0.087 2.530 0.011 0.049 0.390
P1 csi_overall_2 ~ self_open_1 p12 0.066 0.086 0.762 0.446 -0.103 0.235
P1 csi_overall_1 ~ partner_open_1 p21 0.261 0.085 3.061 0.002 0.094 0.428
P1 csi_overall_1 ~ open_diff_p1 d1 -0.089 0.083 -1.071 0.284 -0.251 0.074
P1 csi_overall_2 ~ open_diff_p1 d2 -0.083 0.084 -0.989 0.323 -0.247 0.081
P1 csi_overall_1 ~ self_intel_1 a1 0.184 0.082 2.242 0.025 0.023 0.344
P1 csi_overall_2 ~ partner_intel_1 ap1 0.159 0.083 1.926 0.054 -0.003 0.321
P1 csi_overall_2 ~ self_intel_1 p12 0.120 0.085 1.421 0.155 -0.046 0.286
P1 csi_overall_1 ~ partner_intel_1 p21 0.235 0.079 2.966 0.003 0.080 0.391
P1 csi_overall_1 ~ intel_diff_p1 d1 -0.005 0.083 -0.063 0.950 -0.168 0.157
P1 csi_overall_2 ~ intel_diff_p1 d2 0.088 0.085 1.043 0.297 -0.078 0.255
P1 csi_overall_1 ~ self_opena_1 a1 -0.066 0.088 -0.749 0.454 -0.239 0.107
P1 csi_overall_2 ~ partner_opena_1 ap1 0.234 0.097 2.425 0.015 0.045 0.424
P1 csi_overall_2 ~ self_opena_1 p12 0.035 0.088 0.393 0.695 -0.138 0.208
P1 csi_overall_1 ~ partner_opena_1 p21 0.227 0.097 2.344 0.019 0.037 0.417
P1 csi_overall_1 ~ opena_diff_p1 d1 -0.034 0.094 -0.358 0.720 -0.218 0.151
P1 csi_overall_2 ~ opena_diff_p1 d2 0.008 0.094 0.080 0.936 -0.177 0.192
h5_results$perceived_p2 %>%
  knitr::kable(
    caption = "Standardized solutions for APIM models with P2-perceived similarity"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Standardized solutions for APIM models with P2-perceived similarity
perception lhs op rhs label est.std se z pvalue ci.lower ci.upper
P2 csi_overall_2 ~ self_pa_2 a2 0.215 0.068 3.175 0.002 0.082 0.348
P2 csi_overall_1 ~ partner_pa_2 ap2 -0.023 0.071 -0.321 0.748 -0.162 0.116
P2 csi_overall_1 ~ self_pa_2 p21 0.145 0.059 2.441 0.015 0.029 0.261
P2 csi_overall_2 ~ partner_pa_2 p21 0.134 0.056 2.412 0.016 0.025 0.243
P2 csi_overall_1 ~ pa_diff_p2 d1 0.127 0.085 1.488 0.137 -0.040 0.294
P2 csi_overall_2 ~ pa_diff_p2 d2 -0.056 0.083 -0.667 0.504 -0.219 0.108
P2 csi_overall_2 ~ self_na_2 a2 -0.242 0.067 -3.609 0.000 -0.374 -0.111
P2 csi_overall_1 ~ partner_na_2 ap2 -0.028 0.073 -0.381 0.703 -0.170 0.115
P2 csi_overall_1 ~ self_na_2 p21 -0.246 0.054 -4.552 0.000 -0.353 -0.140
P2 csi_overall_2 ~ partner_na_2 p21 -0.264 0.057 -4.627 0.000 -0.376 -0.152
P2 csi_overall_1 ~ na_diff_p2 d1 0.102 0.086 1.187 0.235 -0.066 0.270
P2 csi_overall_2 ~ na_diff_p2 d2 0.113 0.082 1.379 0.168 -0.047 0.272
P2 csi_overall_2 ~ self_agree_2 a2 0.205 0.063 3.247 0.001 0.081 0.329
P2 csi_overall_1 ~ partner_agree_2 ap2 0.098 0.071 1.379 0.168 -0.041 0.236
P2 csi_overall_1 ~ self_agree_2 p21 0.294 0.047 6.201 0.000 0.201 0.387
P2 csi_overall_2 ~ partner_agree_2 p21 0.355 0.057 6.216 0.000 0.243 0.466
P2 csi_overall_1 ~ agree_diff_p2 d1 0.019 0.081 0.229 0.819 -0.141 0.178
P2 csi_overall_2 ~ agree_diff_p2 d2 -0.178 0.076 -2.342 0.019 -0.326 -0.029
P2 csi_overall_2 ~ self_compa_2 a2 0.231 0.069 3.352 0.001 0.096 0.366
P2 csi_overall_1 ~ partner_compa_2 ap2 0.079 0.073 1.093 0.275 -0.063 0.222
P2 csi_overall_1 ~ self_compa_2 p21 0.259 0.056 4.617 0.000 0.149 0.368
P2 csi_overall_2 ~ partner_compa_2 p21 0.254 0.057 4.420 0.000 0.141 0.366
P2 csi_overall_1 ~ compa_diff_p2 d1 0.070 0.088 0.793 0.428 -0.102 0.242
P2 csi_overall_2 ~ compa_diff_p2 d2 -0.162 0.083 -1.962 0.050 -0.324 0.000
P2 csi_overall_2 ~ self_polit_2 a2 0.076 0.071 1.073 0.283 -0.063 0.216
P2 csi_overall_1 ~ partner_polit_2 ap2 0.106 0.072 1.478 0.139 -0.035 0.247
P2 csi_overall_1 ~ self_polit_2 p21 0.241 0.051 4.767 0.000 0.142 0.340
P2 csi_overall_2 ~ partner_polit_2 p21 0.283 0.059 4.838 0.000 0.168 0.398
P2 csi_overall_1 ~ polit_diff_p2 d1 -0.078 0.082 -0.948 0.343 -0.238 0.083
P2 csi_overall_2 ~ polit_diff_p2 d2 -0.151 0.081 -1.861 0.063 -0.311 0.008
P2 csi_overall_2 ~ self_consci_2 a2 0.108 0.082 1.311 0.190 -0.053 0.268
P2 csi_overall_1 ~ partner_consci_2 ap2 0.157 0.078 2.004 0.045 0.003 0.311
P2 csi_overall_1 ~ self_consci_2 p21 0.139 0.061 2.295 0.022 0.020 0.258
P2 csi_overall_2 ~ partner_consci_2 p21 0.143 0.064 2.220 0.026 0.017 0.269
P2 csi_overall_1 ~ consci_diff_p2 d1 0.077 0.085 0.900 0.368 -0.090 0.244
P2 csi_overall_2 ~ consci_diff_p2 d2 -0.035 0.088 -0.399 0.690 -0.207 0.137
P2 csi_overall_2 ~ self_indus_2 a2 0.194 0.083 2.324 0.020 0.030 0.357
P2 csi_overall_1 ~ partner_indus_2 ap2 0.098 0.078 1.255 0.210 -0.055 0.251
P2 csi_overall_1 ~ self_indus_2 p21 0.176 0.063 2.799 0.005 0.053 0.299
P2 csi_overall_2 ~ partner_indus_2 p21 0.173 0.064 2.703 0.007 0.048 0.299
P2 csi_overall_1 ~ indus_diff_p2 d1 0.087 0.088 0.988 0.323 -0.086 0.260
P2 csi_overall_2 ~ indus_diff_p2 d2 0.009 0.092 0.093 0.926 -0.171 0.188
P2 csi_overall_2 ~ self_order_2 a2 -0.012 0.079 -0.150 0.880 -0.167 0.144
P2 csi_overall_1 ~ partner_order_2 ap2 0.173 0.077 2.236 0.025 0.021 0.325
P2 csi_overall_1 ~ self_order_2 p21 0.063 0.060 1.051 0.293 -0.054 0.179
P2 csi_overall_2 ~ partner_order_2 p21 0.065 0.063 1.037 0.300 -0.058 0.188
P2 csi_overall_1 ~ order_diff_p2 d1 0.118 0.083 1.411 0.158 -0.046 0.281
P2 csi_overall_2 ~ order_diff_p2 d2 -0.094 0.085 -1.104 0.270 -0.260 0.073
P2 csi_overall_2 ~ self_extra_2 a2 0.369 0.061 6.065 0.000 0.250 0.488
P2 csi_overall_1 ~ partner_extra_2 ap2 0.029 0.072 0.408 0.683 -0.112 0.170
P2 csi_overall_1 ~ self_extra_2 p21 0.247 0.058 4.251 0.000 0.133 0.361
P2 csi_overall_2 ~ partner_extra_2 p21 0.217 0.053 4.067 0.000 0.112 0.321
P2 csi_overall_1 ~ extra_diff_p2 d1 0.065 0.085 0.767 0.443 -0.101 0.231
P2 csi_overall_2 ~ extra_diff_p2 d2 -0.042 0.078 -0.543 0.587 -0.195 0.110
P2 csi_overall_2 ~ self_assert_2 a2 0.270 0.068 3.995 0.000 0.137 0.402
P2 csi_overall_1 ~ partner_assert_2 ap2 -0.041 0.073 -0.553 0.580 -0.185 0.103
P2 csi_overall_1 ~ self_assert_2 p21 0.133 0.061 2.184 0.029 0.014 0.253
P2 csi_overall_2 ~ partner_assert_2 p21 0.117 0.054 2.154 0.031 0.011 0.224
P2 csi_overall_1 ~ assert_diff_p2 d1 0.004 0.085 0.045 0.964 -0.162 0.169
P2 csi_overall_2 ~ assert_diff_p2 d2 -0.087 0.080 -1.085 0.278 -0.245 0.070
P2 csi_overall_2 ~ self_enthu_2 a2 0.393 0.062 6.323 0.000 0.271 0.515
P2 csi_overall_1 ~ partner_enthu_2 ap2 0.108 0.073 1.488 0.137 -0.034 0.251
P2 csi_overall_1 ~ self_enthu_2 p21 0.267 0.057 4.717 0.000 0.156 0.378
P2 csi_overall_2 ~ partner_enthu_2 p21 0.247 0.054 4.567 0.000 0.141 0.353
P2 csi_overall_1 ~ enthu_diff_p2 d1 0.109 0.085 1.280 0.200 -0.058 0.276
P2 csi_overall_2 ~ enthu_diff_p2 d2 0.013 0.079 0.168 0.866 -0.142 0.168
P2 csi_overall_2 ~ self_neuro_2 a2 -0.274 0.067 -4.082 0.000 -0.405 -0.142
P2 csi_overall_1 ~ partner_neuro_2 ap2 -0.139 0.075 -1.851 0.064 -0.287 0.008
P2 csi_overall_1 ~ self_neuro_2 p21 -0.300 0.052 -5.770 0.000 -0.403 -0.198
P2 csi_overall_2 ~ partner_neuro_2 p21 -0.327 0.059 -5.588 0.000 -0.442 -0.212
P2 csi_overall_1 ~ neuro_diff_p2 d1 -0.003 0.081 -0.038 0.970 -0.161 0.155
P2 csi_overall_2 ~ neuro_diff_p2 d2 0.061 0.077 0.789 0.430 -0.091 0.213
P2 csi_overall_2 ~ self_volat_2 a2 -0.276 0.069 -3.977 0.000 -0.412 -0.140
P2 csi_overall_1 ~ partner_volat_2 ap2 -0.191 0.076 -2.519 0.012 -0.340 -0.042
P2 csi_overall_1 ~ self_volat_2 p21 -0.339 0.053 -6.384 0.000 -0.443 -0.235
P2 csi_overall_2 ~ partner_volat_2 p21 -0.365 0.059 -6.153 0.000 -0.481 -0.249
P2 csi_overall_1 ~ volat_diff_p2 d1 -0.059 0.080 -0.745 0.457 -0.216 0.097
P2 csi_overall_2 ~ volat_diff_p2 d2 0.101 0.077 1.307 0.191 -0.050 0.253
P2 csi_overall_2 ~ self_withd_2 a2 -0.237 0.069 -3.417 0.001 -0.373 -0.101
P2 csi_overall_1 ~ partner_withd_2 ap2 -0.052 0.075 -0.692 0.489 -0.200 0.095
P2 csi_overall_1 ~ self_withd_2 p21 -0.207 0.056 -3.724 0.000 -0.316 -0.098
P2 csi_overall_2 ~ partner_withd_2 p21 -0.214 0.059 -3.653 0.000 -0.328 -0.099
P2 csi_overall_1 ~ withd_diff_p2 d1 0.060 0.083 0.722 0.471 -0.103 0.222
P2 csi_overall_2 ~ withd_diff_p2 d2 -0.032 0.081 -0.398 0.690 -0.191 0.126
P2 csi_overall_2 ~ self_open_2 a2 0.223 0.069 3.224 0.001 0.087 0.358
P2 csi_overall_1 ~ partner_open_2 ap2 -0.022 0.070 -0.307 0.759 -0.159 0.116
P2 csi_overall_1 ~ self_open_2 p21 0.161 0.062 2.607 0.009 0.040 0.282
P2 csi_overall_2 ~ partner_open_2 p21 0.132 0.050 2.619 0.009 0.033 0.231
P2 csi_overall_1 ~ open_diff_p2 d1 0.184 0.085 2.170 0.030 0.018 0.351
P2 csi_overall_2 ~ open_diff_p2 d2 -0.061 0.084 -0.722 0.470 -0.225 0.104
P2 csi_overall_2 ~ self_intel_2 a2 0.315 0.077 4.100 0.000 0.164 0.466
P2 csi_overall_1 ~ partner_intel_2 ap2 0.021 0.076 0.273 0.785 -0.128 0.169
P2 csi_overall_1 ~ self_intel_2 p21 0.174 0.065 2.665 0.008 0.046 0.303
P2 csi_overall_2 ~ partner_intel_2 p21 0.149 0.056 2.660 0.008 0.039 0.258
P2 csi_overall_1 ~ intel_diff_p2 d1 0.147 0.090 1.643 0.100 -0.028 0.323
P2 csi_overall_2 ~ intel_diff_p2 d2 0.109 0.089 1.222 0.222 -0.066 0.284
P2 csi_overall_2 ~ self_opena_2 a2 0.142 0.071 1.982 0.047 0.002 0.282
P2 csi_overall_1 ~ partner_opena_2 ap2 -0.031 0.075 -0.420 0.674 -0.178 0.115
P2 csi_overall_1 ~ self_opena_2 p21 0.089 0.062 1.426 0.154 -0.033 0.211
P2 csi_overall_2 ~ partner_opena_2 p21 0.078 0.054 1.437 0.151 -0.028 0.183
P2 csi_overall_1 ~ opena_diff_p2 d1 0.050 0.089 0.562 0.574 -0.124 0.224
P2 csi_overall_2 ~ opena_diff_p2 d2 -0.109 0.086 -1.270 0.204 -0.277 0.059

Hypothesis 6: APIM Perceived Similarities

# output included in h5_function
h5_results$perceived_p1 %>%
  knitr::kable(
    caption = "Standardized solutions for APIM models with P1-perceived similarity"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Standardized solutions for APIM models with P1-perceived similarity
perception lhs op rhs label est.std se z pvalue ci.lower ci.upper
P1 csi_overall_1 ~ self_pa_1 a1 0.042 0.098 0.429 0.668 -0.149 0.233
P1 csi_overall_2 ~ partner_pa_1 ap1 0.261 0.092 2.835 0.005 0.080 0.441
P1 csi_overall_2 ~ self_pa_1 p12 -0.203 0.094 -2.150 0.032 -0.388 -0.018
P1 csi_overall_1 ~ partner_pa_1 p21 0.141 0.096 1.473 0.141 -0.047 0.328
P1 csi_overall_1 ~ pa_diff_p1 d1 -0.134 0.084 -1.596 0.110 -0.300 0.031
P1 csi_overall_2 ~ pa_diff_p1 d2 -0.202 0.082 -2.469 0.014 -0.362 -0.042
P1 csi_overall_1 ~ self_na_1 a1 -0.106 0.110 -0.971 0.331 -0.321 0.108
P1 csi_overall_2 ~ partner_na_1 ap1 0.053 0.098 0.546 0.585 -0.138 0.244
P1 csi_overall_2 ~ self_na_1 p12 -0.203 0.112 -1.815 0.069 -0.422 0.016
P1 csi_overall_1 ~ partner_na_1 p21 -0.233 0.093 -2.499 0.012 -0.415 -0.050
P1 csi_overall_1 ~ na_diff_p1 d1 -0.079 0.099 -0.793 0.428 -0.274 0.116
P1 csi_overall_2 ~ na_diff_p1 d2 -0.052 0.102 -0.513 0.608 -0.253 0.148
P1 csi_overall_1 ~ self_agree_1 a1 0.246 0.077 3.183 0.001 0.095 0.398
P1 csi_overall_2 ~ partner_agree_1 ap1 0.097 0.094 1.035 0.301 -0.087 0.281
P1 csi_overall_2 ~ self_agree_1 p12 0.115 0.088 1.305 0.192 -0.058 0.288
P1 csi_overall_1 ~ partner_agree_1 p21 0.287 0.082 3.513 0.000 0.127 0.447
P1 csi_overall_1 ~ agree_diff_p1 d1 -0.131 0.079 -1.669 0.095 -0.286 0.023
P1 csi_overall_2 ~ agree_diff_p1 d2 -0.095 0.088 -1.078 0.281 -0.268 0.078
P1 csi_overall_1 ~ self_compa_1 a1 0.315 0.081 3.873 0.000 0.156 0.474
P1 csi_overall_2 ~ partner_compa_1 ap1 -0.004 0.106 -0.038 0.969 -0.212 0.204
P1 csi_overall_2 ~ self_compa_1 p12 0.199 0.088 2.257 0.024 0.026 0.371
P1 csi_overall_1 ~ partner_compa_1 p21 0.097 0.100 0.968 0.333 -0.099 0.293
P1 csi_overall_1 ~ compa_diff_p1 d1 -0.161 0.095 -1.706 0.088 -0.347 0.024
P1 csi_overall_2 ~ compa_diff_p1 d2 -0.193 0.099 -1.941 0.052 -0.387 0.002
P1 csi_overall_1 ~ self_polit_1 a1 0.148 0.082 1.818 0.069 -0.012 0.308
P1 csi_overall_2 ~ partner_polit_1 ap1 0.120 0.086 1.398 0.162 -0.048 0.288
P1 csi_overall_2 ~ self_polit_1 p12 0.047 0.093 0.506 0.613 -0.135 0.229
P1 csi_overall_1 ~ partner_polit_1 p21 0.414 0.070 5.905 0.000 0.277 0.552
P1 csi_overall_1 ~ polit_diff_p1 d1 -0.045 0.081 -0.559 0.576 -0.203 0.113
P1 csi_overall_2 ~ polit_diff_p1 d2 0.000 0.091 0.001 1.000 -0.179 0.179
P1 csi_overall_1 ~ self_consci_1 a1 0.142 0.082 1.730 0.084 -0.019 0.303
P1 csi_overall_2 ~ partner_consci_1 ap1 -0.001 0.085 -0.012 0.990 -0.167 0.165
P1 csi_overall_2 ~ self_consci_1 p12 -0.035 0.084 -0.413 0.680 -0.200 0.130
P1 csi_overall_1 ~ partner_consci_1 p21 0.111 0.083 1.334 0.182 -0.052 0.274
P1 csi_overall_1 ~ consci_diff_p1 d1 -0.138 0.083 -1.671 0.095 -0.300 0.024
P1 csi_overall_2 ~ consci_diff_p1 d2 -0.159 0.084 -1.899 0.058 -0.323 0.005
P1 csi_overall_1 ~ self_indus_1 a1 0.106 0.084 1.265 0.206 -0.058 0.271
P1 csi_overall_2 ~ partner_indus_1 ap1 0.054 0.084 0.647 0.517 -0.110 0.219
P1 csi_overall_2 ~ self_indus_1 p12 -0.042 0.086 -0.488 0.626 -0.211 0.127
P1 csi_overall_1 ~ partner_indus_1 p21 0.189 0.081 2.341 0.019 0.031 0.348
P1 csi_overall_1 ~ indus_diff_p1 d1 -0.161 0.083 -1.941 0.052 -0.324 0.002
P1 csi_overall_2 ~ indus_diff_p1 d2 -0.177 0.085 -2.096 0.036 -0.343 -0.012
P1 csi_overall_1 ~ self_order_1 a1 0.120 0.085 1.421 0.155 -0.046 0.286
P1 csi_overall_2 ~ partner_order_1 ap1 -0.024 0.086 -0.284 0.777 -0.194 0.145
P1 csi_overall_2 ~ self_order_1 p12 -0.036 0.086 -0.419 0.675 -0.204 0.132
P1 csi_overall_1 ~ partner_order_1 p21 0.013 0.086 0.152 0.879 -0.155 0.181
P1 csi_overall_1 ~ order_diff_p1 d1 -0.106 0.086 -1.231 0.218 -0.274 0.063
P1 csi_overall_2 ~ order_diff_p1 d2 -0.066 0.087 -0.756 0.449 -0.236 0.105
P1 csi_overall_1 ~ self_extra_1 a1 0.184 0.085 2.173 0.030 0.018 0.350
P1 csi_overall_2 ~ partner_extra_1 ap1 0.177 0.081 2.182 0.029 0.018 0.337
P1 csi_overall_2 ~ self_extra_1 p12 0.092 0.084 1.093 0.275 -0.073 0.257
P1 csi_overall_1 ~ partner_extra_1 p21 0.101 0.084 1.203 0.229 -0.063 0.265
P1 csi_overall_1 ~ extra_diff_p1 d1 0.029 0.085 0.336 0.737 -0.138 0.195
P1 csi_overall_2 ~ extra_diff_p1 d2 -0.169 0.082 -2.048 0.041 -0.330 -0.007
P1 csi_overall_1 ~ self_assert_1 a1 0.039 0.089 0.435 0.663 -0.136 0.213
P1 csi_overall_2 ~ partner_assert_1 ap1 0.102 0.083 1.230 0.219 -0.061 0.266
P1 csi_overall_2 ~ self_assert_1 p12 0.098 0.087 1.124 0.261 -0.073 0.269
P1 csi_overall_1 ~ partner_assert_1 p21 -0.033 0.085 -0.384 0.701 -0.199 0.134
P1 csi_overall_1 ~ assert_diff_p1 d1 0.016 0.089 0.179 0.858 -0.158 0.190
P1 csi_overall_2 ~ assert_diff_p1 d2 -0.094 0.087 -1.084 0.279 -0.265 0.076
P1 csi_overall_1 ~ self_enthu_1 a1 0.246 0.078 3.135 0.002 0.092 0.399
P1 csi_overall_2 ~ partner_enthu_1 ap1 0.190 0.082 2.324 0.020 0.030 0.350
P1 csi_overall_2 ~ self_enthu_1 p12 0.074 0.082 0.906 0.365 -0.086 0.234
P1 csi_overall_1 ~ partner_enthu_1 p21 0.214 0.080 2.671 0.008 0.057 0.370
P1 csi_overall_1 ~ enthu_diff_p1 d1 -0.039 0.081 -0.480 0.631 -0.198 0.120
P1 csi_overall_2 ~ enthu_diff_p1 d2 -0.189 0.081 -2.331 0.020 -0.348 -0.030
P1 csi_overall_1 ~ self_neuro_1 a1 -0.242 0.078 -3.080 0.002 -0.396 -0.088
P1 csi_overall_2 ~ partner_neuro_1 ap1 -0.096 0.087 -1.104 0.270 -0.267 0.074
P1 csi_overall_2 ~ self_neuro_1 p12 -0.260 0.083 -3.117 0.002 -0.424 -0.097
P1 csi_overall_1 ~ partner_neuro_1 p21 -0.389 0.076 -5.107 0.000 -0.538 -0.240
P1 csi_overall_1 ~ neuro_diff_p1 d1 0.078 0.083 0.939 0.348 -0.085 0.241
P1 csi_overall_2 ~ neuro_diff_p1 d2 0.069 0.089 0.773 0.440 -0.106 0.244
P1 csi_overall_1 ~ self_volat_1 a1 -0.245 0.083 -2.950 0.003 -0.408 -0.082
P1 csi_overall_2 ~ partner_volat_1 ap1 -0.115 0.086 -1.336 0.182 -0.284 0.054
P1 csi_overall_2 ~ self_volat_1 p12 -0.253 0.090 -2.816 0.005 -0.429 -0.077
P1 csi_overall_1 ~ partner_volat_1 p21 -0.446 0.072 -6.154 0.000 -0.588 -0.304
P1 csi_overall_1 ~ volat_diff_p1 d1 0.025 0.085 0.299 0.765 -0.141 0.192
P1 csi_overall_2 ~ volat_diff_p1 d2 0.081 0.092 0.883 0.377 -0.099 0.262
P1 csi_overall_1 ~ self_withd_1 a1 -0.157 0.080 -1.952 0.051 -0.315 0.001
P1 csi_overall_2 ~ partner_withd_1 ap1 -0.041 0.088 -0.465 0.642 -0.214 0.132
P1 csi_overall_2 ~ self_withd_1 p12 -0.211 0.081 -2.597 0.009 -0.371 -0.052
P1 csi_overall_1 ~ partner_withd_1 p21 -0.221 0.084 -2.619 0.009 -0.386 -0.056
P1 csi_overall_1 ~ withd_diff_p1 d1 0.095 0.086 1.107 0.268 -0.073 0.263
P1 csi_overall_2 ~ withd_diff_p1 d2 0.060 0.088 0.688 0.491 -0.112 0.233
P1 csi_overall_1 ~ self_open_1 a1 0.032 0.086 0.374 0.708 -0.136 0.200
P1 csi_overall_2 ~ partner_open_1 ap1 0.220 0.087 2.530 0.011 0.049 0.390
P1 csi_overall_2 ~ self_open_1 p12 0.066 0.086 0.762 0.446 -0.103 0.235
P1 csi_overall_1 ~ partner_open_1 p21 0.261 0.085 3.061 0.002 0.094 0.428
P1 csi_overall_1 ~ open_diff_p1 d1 -0.089 0.083 -1.071 0.284 -0.251 0.074
P1 csi_overall_2 ~ open_diff_p1 d2 -0.083 0.084 -0.989 0.323 -0.247 0.081
P1 csi_overall_1 ~ self_intel_1 a1 0.184 0.082 2.242 0.025 0.023 0.344
P1 csi_overall_2 ~ partner_intel_1 ap1 0.159 0.083 1.926 0.054 -0.003 0.321
P1 csi_overall_2 ~ self_intel_1 p12 0.120 0.085 1.421 0.155 -0.046 0.286
P1 csi_overall_1 ~ partner_intel_1 p21 0.235 0.079 2.966 0.003 0.080 0.391
P1 csi_overall_1 ~ intel_diff_p1 d1 -0.005 0.083 -0.063 0.950 -0.168 0.157
P1 csi_overall_2 ~ intel_diff_p1 d2 0.088 0.085 1.043 0.297 -0.078 0.255
P1 csi_overall_1 ~ self_opena_1 a1 -0.066 0.088 -0.749 0.454 -0.239 0.107
P1 csi_overall_2 ~ partner_opena_1 ap1 0.234 0.097 2.425 0.015 0.045 0.424
P1 csi_overall_2 ~ self_opena_1 p12 0.035 0.088 0.393 0.695 -0.138 0.208
P1 csi_overall_1 ~ partner_opena_1 p21 0.227 0.097 2.344 0.019 0.037 0.417
P1 csi_overall_1 ~ opena_diff_p1 d1 -0.034 0.094 -0.358 0.720 -0.218 0.151
P1 csi_overall_2 ~ opena_diff_p1 d2 0.008 0.094 0.080 0.936 -0.177 0.192
h5_results$perceived_p2 %>%
  knitr::kable(
    caption = "Standardized solutions for APIM models with P2-perceived similarity"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Standardized solutions for APIM models with P2-perceived similarity
perception lhs op rhs label est.std se z pvalue ci.lower ci.upper
P2 csi_overall_2 ~ self_pa_2 a2 0.215 0.068 3.175 0.002 0.082 0.348
P2 csi_overall_1 ~ partner_pa_2 ap2 -0.023 0.071 -0.321 0.748 -0.162 0.116
P2 csi_overall_1 ~ self_pa_2 p21 0.145 0.059 2.441 0.015 0.029 0.261
P2 csi_overall_2 ~ partner_pa_2 p21 0.134 0.056 2.412 0.016 0.025 0.243
P2 csi_overall_1 ~ pa_diff_p2 d1 0.127 0.085 1.488 0.137 -0.040 0.294
P2 csi_overall_2 ~ pa_diff_p2 d2 -0.056 0.083 -0.667 0.504 -0.219 0.108
P2 csi_overall_2 ~ self_na_2 a2 -0.242 0.067 -3.609 0.000 -0.374 -0.111
P2 csi_overall_1 ~ partner_na_2 ap2 -0.028 0.073 -0.381 0.703 -0.170 0.115
P2 csi_overall_1 ~ self_na_2 p21 -0.246 0.054 -4.552 0.000 -0.353 -0.140
P2 csi_overall_2 ~ partner_na_2 p21 -0.264 0.057 -4.627 0.000 -0.376 -0.152
P2 csi_overall_1 ~ na_diff_p2 d1 0.102 0.086 1.187 0.235 -0.066 0.270
P2 csi_overall_2 ~ na_diff_p2 d2 0.113 0.082 1.379 0.168 -0.047 0.272
P2 csi_overall_2 ~ self_agree_2 a2 0.205 0.063 3.247 0.001 0.081 0.329
P2 csi_overall_1 ~ partner_agree_2 ap2 0.098 0.071 1.379 0.168 -0.041 0.236
P2 csi_overall_1 ~ self_agree_2 p21 0.294 0.047 6.201 0.000 0.201 0.387
P2 csi_overall_2 ~ partner_agree_2 p21 0.355 0.057 6.216 0.000 0.243 0.466
P2 csi_overall_1 ~ agree_diff_p2 d1 0.019 0.081 0.229 0.819 -0.141 0.178
P2 csi_overall_2 ~ agree_diff_p2 d2 -0.178 0.076 -2.342 0.019 -0.326 -0.029
P2 csi_overall_2 ~ self_compa_2 a2 0.231 0.069 3.352 0.001 0.096 0.366
P2 csi_overall_1 ~ partner_compa_2 ap2 0.079 0.073 1.093 0.275 -0.063 0.222
P2 csi_overall_1 ~ self_compa_2 p21 0.259 0.056 4.617 0.000 0.149 0.368
P2 csi_overall_2 ~ partner_compa_2 p21 0.254 0.057 4.420 0.000 0.141 0.366
P2 csi_overall_1 ~ compa_diff_p2 d1 0.070 0.088 0.793 0.428 -0.102 0.242
P2 csi_overall_2 ~ compa_diff_p2 d2 -0.162 0.083 -1.962 0.050 -0.324 0.000
P2 csi_overall_2 ~ self_polit_2 a2 0.076 0.071 1.073 0.283 -0.063 0.216
P2 csi_overall_1 ~ partner_polit_2 ap2 0.106 0.072 1.478 0.139 -0.035 0.247
P2 csi_overall_1 ~ self_polit_2 p21 0.241 0.051 4.767 0.000 0.142 0.340
P2 csi_overall_2 ~ partner_polit_2 p21 0.283 0.059 4.838 0.000 0.168 0.398
P2 csi_overall_1 ~ polit_diff_p2 d1 -0.078 0.082 -0.948 0.343 -0.238 0.083
P2 csi_overall_2 ~ polit_diff_p2 d2 -0.151 0.081 -1.861 0.063 -0.311 0.008
P2 csi_overall_2 ~ self_consci_2 a2 0.108 0.082 1.311 0.190 -0.053 0.268
P2 csi_overall_1 ~ partner_consci_2 ap2 0.157 0.078 2.004 0.045 0.003 0.311
P2 csi_overall_1 ~ self_consci_2 p21 0.139 0.061 2.295 0.022 0.020 0.258
P2 csi_overall_2 ~ partner_consci_2 p21 0.143 0.064 2.220 0.026 0.017 0.269
P2 csi_overall_1 ~ consci_diff_p2 d1 0.077 0.085 0.900 0.368 -0.090 0.244
P2 csi_overall_2 ~ consci_diff_p2 d2 -0.035 0.088 -0.399 0.690 -0.207 0.137
P2 csi_overall_2 ~ self_indus_2 a2 0.194 0.083 2.324 0.020 0.030 0.357
P2 csi_overall_1 ~ partner_indus_2 ap2 0.098 0.078 1.255 0.210 -0.055 0.251
P2 csi_overall_1 ~ self_indus_2 p21 0.176 0.063 2.799 0.005 0.053 0.299
P2 csi_overall_2 ~ partner_indus_2 p21 0.173 0.064 2.703 0.007 0.048 0.299
P2 csi_overall_1 ~ indus_diff_p2 d1 0.087 0.088 0.988 0.323 -0.086 0.260
P2 csi_overall_2 ~ indus_diff_p2 d2 0.009 0.092 0.093 0.926 -0.171 0.188
P2 csi_overall_2 ~ self_order_2 a2 -0.012 0.079 -0.150 0.880 -0.167 0.144
P2 csi_overall_1 ~ partner_order_2 ap2 0.173 0.077 2.236 0.025 0.021 0.325
P2 csi_overall_1 ~ self_order_2 p21 0.063 0.060 1.051 0.293 -0.054 0.179
P2 csi_overall_2 ~ partner_order_2 p21 0.065 0.063 1.037 0.300 -0.058 0.188
P2 csi_overall_1 ~ order_diff_p2 d1 0.118 0.083 1.411 0.158 -0.046 0.281
P2 csi_overall_2 ~ order_diff_p2 d2 -0.094 0.085 -1.104 0.270 -0.260 0.073
P2 csi_overall_2 ~ self_extra_2 a2 0.369 0.061 6.065 0.000 0.250 0.488
P2 csi_overall_1 ~ partner_extra_2 ap2 0.029 0.072 0.408 0.683 -0.112 0.170
P2 csi_overall_1 ~ self_extra_2 p21 0.247 0.058 4.251 0.000 0.133 0.361
P2 csi_overall_2 ~ partner_extra_2 p21 0.217 0.053 4.067 0.000 0.112 0.321
P2 csi_overall_1 ~ extra_diff_p2 d1 0.065 0.085 0.767 0.443 -0.101 0.231
P2 csi_overall_2 ~ extra_diff_p2 d2 -0.042 0.078 -0.543 0.587 -0.195 0.110
P2 csi_overall_2 ~ self_assert_2 a2 0.270 0.068 3.995 0.000 0.137 0.402
P2 csi_overall_1 ~ partner_assert_2 ap2 -0.041 0.073 -0.553 0.580 -0.185 0.103
P2 csi_overall_1 ~ self_assert_2 p21 0.133 0.061 2.184 0.029 0.014 0.253
P2 csi_overall_2 ~ partner_assert_2 p21 0.117 0.054 2.154 0.031 0.011 0.224
P2 csi_overall_1 ~ assert_diff_p2 d1 0.004 0.085 0.045 0.964 -0.162 0.169
P2 csi_overall_2 ~ assert_diff_p2 d2 -0.087 0.080 -1.085 0.278 -0.245 0.070
P2 csi_overall_2 ~ self_enthu_2 a2 0.393 0.062 6.323 0.000 0.271 0.515
P2 csi_overall_1 ~ partner_enthu_2 ap2 0.108 0.073 1.488 0.137 -0.034 0.251
P2 csi_overall_1 ~ self_enthu_2 p21 0.267 0.057 4.717 0.000 0.156 0.378
P2 csi_overall_2 ~ partner_enthu_2 p21 0.247 0.054 4.567 0.000 0.141 0.353
P2 csi_overall_1 ~ enthu_diff_p2 d1 0.109 0.085 1.280 0.200 -0.058 0.276
P2 csi_overall_2 ~ enthu_diff_p2 d2 0.013 0.079 0.168 0.866 -0.142 0.168
P2 csi_overall_2 ~ self_neuro_2 a2 -0.274 0.067 -4.082 0.000 -0.405 -0.142
P2 csi_overall_1 ~ partner_neuro_2 ap2 -0.139 0.075 -1.851 0.064 -0.287 0.008
P2 csi_overall_1 ~ self_neuro_2 p21 -0.300 0.052 -5.770 0.000 -0.403 -0.198
P2 csi_overall_2 ~ partner_neuro_2 p21 -0.327 0.059 -5.588 0.000 -0.442 -0.212
P2 csi_overall_1 ~ neuro_diff_p2 d1 -0.003 0.081 -0.038 0.970 -0.161 0.155
P2 csi_overall_2 ~ neuro_diff_p2 d2 0.061 0.077 0.789 0.430 -0.091 0.213
P2 csi_overall_2 ~ self_volat_2 a2 -0.276 0.069 -3.977 0.000 -0.412 -0.140
P2 csi_overall_1 ~ partner_volat_2 ap2 -0.191 0.076 -2.519 0.012 -0.340 -0.042
P2 csi_overall_1 ~ self_volat_2 p21 -0.339 0.053 -6.384 0.000 -0.443 -0.235
P2 csi_overall_2 ~ partner_volat_2 p21 -0.365 0.059 -6.153 0.000 -0.481 -0.249
P2 csi_overall_1 ~ volat_diff_p2 d1 -0.059 0.080 -0.745 0.457 -0.216 0.097
P2 csi_overall_2 ~ volat_diff_p2 d2 0.101 0.077 1.307 0.191 -0.050 0.253
P2 csi_overall_2 ~ self_withd_2 a2 -0.237 0.069 -3.417 0.001 -0.373 -0.101
P2 csi_overall_1 ~ partner_withd_2 ap2 -0.052 0.075 -0.692 0.489 -0.200 0.095
P2 csi_overall_1 ~ self_withd_2 p21 -0.207 0.056 -3.724 0.000 -0.316 -0.098
P2 csi_overall_2 ~ partner_withd_2 p21 -0.214 0.059 -3.653 0.000 -0.328 -0.099
P2 csi_overall_1 ~ withd_diff_p2 d1 0.060 0.083 0.722 0.471 -0.103 0.222
P2 csi_overall_2 ~ withd_diff_p2 d2 -0.032 0.081 -0.398 0.690 -0.191 0.126
P2 csi_overall_2 ~ self_open_2 a2 0.223 0.069 3.224 0.001 0.087 0.358
P2 csi_overall_1 ~ partner_open_2 ap2 -0.022 0.070 -0.307 0.759 -0.159 0.116
P2 csi_overall_1 ~ self_open_2 p21 0.161 0.062 2.607 0.009 0.040 0.282
P2 csi_overall_2 ~ partner_open_2 p21 0.132 0.050 2.619 0.009 0.033 0.231
P2 csi_overall_1 ~ open_diff_p2 d1 0.184 0.085 2.170 0.030 0.018 0.351
P2 csi_overall_2 ~ open_diff_p2 d2 -0.061 0.084 -0.722 0.470 -0.225 0.104
P2 csi_overall_2 ~ self_intel_2 a2 0.315 0.077 4.100 0.000 0.164 0.466
P2 csi_overall_1 ~ partner_intel_2 ap2 0.021 0.076 0.273 0.785 -0.128 0.169
P2 csi_overall_1 ~ self_intel_2 p21 0.174 0.065 2.665 0.008 0.046 0.303
P2 csi_overall_2 ~ partner_intel_2 p21 0.149 0.056 2.660 0.008 0.039 0.258
P2 csi_overall_1 ~ intel_diff_p2 d1 0.147 0.090 1.643 0.100 -0.028 0.323
P2 csi_overall_2 ~ intel_diff_p2 d2 0.109 0.089 1.222 0.222 -0.066 0.284
P2 csi_overall_2 ~ self_opena_2 a2 0.142 0.071 1.982 0.047 0.002 0.282
P2 csi_overall_1 ~ partner_opena_2 ap2 -0.031 0.075 -0.420 0.674 -0.178 0.115
P2 csi_overall_1 ~ self_opena_2 p21 0.089 0.062 1.426 0.154 -0.033 0.211
P2 csi_overall_2 ~ partner_opena_2 p21 0.078 0.054 1.437 0.151 -0.028 0.183
P2 csi_overall_1 ~ opena_diff_p2 d1 0.050 0.089 0.562 0.574 -0.124 0.224
P2 csi_overall_2 ~ opena_diff_p2 d2 -0.109 0.086 -1.270 0.204 -0.277 0.059

Hypothesis 7: Dynamic Benefits

Dynamically, partner similarity in momentary variability on personality and affective states is associated with enhanced relationship quality.

# run function 
# same as h4 but without the profile argument
h7_results <- h4_function(
  var_list = apply(expand.grid(
    c("mpa", "mna", 
      "tipi_agree", "tipi_consci", "tipi_extra", "tipi_neuro", "tipi_open"),
    c("_sd", "_rvi", "_mssd", "_rmssd")), 1, paste, collapse = ""),
  quality_var = "csi_overall",
  .data = baseline
)

### z-correlation as predictors ###
fluctuation_tab <- data.frame()

# sort data
fluctuation_dat <- baseline %>% arrange(Couple_ID)

#   extract vector of each partner score on relationship quality variables
p1_qual <- fluctuation_dat[fluctuation_dat$P_num == 1, "csi_overall", drop = T]
p2_qual <- fluctuation_dat[fluctuation_dat$P_num == 2, "csi_overall", drop = T]

for(ivar in paste0(
  c("mpa", "mna", 
    "tipi_agree", "tipi_consci", "tipi_extra", "tipi_neuro", "tipi_open"),
  "_z")) {
  
  # extract vector of fisher's z-transformed within-couple correlation
  #   same for both participants, use P_num = 1 to avoid duplication
  z_var <- fluctuation_dat[fluctuation_dat$P_num == 1, ivar, drop = T]
  
  # fit simple regression models
  mod_1 <- summary(lm(p1_qual ~ z_var))$coefficients
  mod_2 <- summary(lm(p2_qual ~ z_var))$coefficients
  
  # extract coefficients
  z_1   <- round(mod_1["z_var", 
                       c("Estimate", "t value", "Pr(>|t|)")], 3)
  z_2   <- round(mod_2["z_var", 
                       c("Estimate", "t value", "Pr(>|t|)")], 3)
  
  # store values in difference_tab
  fluctuation_tab <- rbind(
    fluctuation_tab,
    
    # first partner
    c(ivar, "P1", z_1),
    
    # second partner
    c(ivar, "P2", z_2)
    )
} # END for ivar LOOP

#   rename results table
names(fluctuation_tab) <- c("personality", "participant",
                            "z_est", "z_tval", "z_pval")

# view results
h7_results$interaction_tab %>%
  knitr::kable(
    caption = "Multiple Regression Models with Interaction Effects"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Multiple Regression Models with Interaction Effects
personality participant actor_est actor_tval actor_pval partner_est partner_tval partner_pval int_est int_tval int_pval
mpa_sd P1 -0.416 -0.72 0.473 0.275 0.468 0.641 0.012 0.353 0.725
mpa_sd P2 0.002 0.003 0.998 -0.216 -0.343 0.732 -0.001 -0.02 0.984
mna_sd P1 -1.122 -2.315 0.022 -0.449 -0.843 0.401 0.056 1.729 0.086
mna_sd P2 -0.397 -0.682 0.497 -0.436 -0.822 0.412 0.01 0.282 0.778
tipi_agree_sd P1 -15.679 -1.037 0.302 -9.888 -0.655 0.513 9.914 0.684 0.495
tipi_agree_sd P2 2.982 0.184 0.854 9.638 0.593 0.554 -11.451 -0.736 0.463
tipi_consci_sd P1 2.093 0.143 0.886 5.011 0.323 0.747 -1.188 -0.084 0.933
tipi_consci_sd P2 21.394 1.298 0.196 25.455 1.639 0.104 -26.932 -1.8 0.074
tipi_extra_sd P1 9.276 0.614 0.541 9.418 0.517 0.606 -1.356 -0.1 0.92
tipi_extra_sd P2 3.718 0.188 0.851 6.527 0.399 0.691 1.946 0.133 0.895
tipi_neuro_sd P1 -11.311 -0.779 0.437 -8.162 -0.54 0.59 10.826 0.847 0.399
tipi_neuro_sd P2 1.274 0.078 0.938 -0.125 -0.008 0.994 -2.768 -0.2 0.842
tipi_open_sd P1 0.314 0.022 0.982 4.13 0.238 0.812 -2.23 -0.132 0.895
tipi_open_sd P2 11.323 0.606 0.545 11.007 0.721 0.472 -11.938 -0.657 0.513
mpa_rvi P1 -9.109 -0.34 0.734 -9.246 -0.354 0.724 40.456 0.673 0.502
mpa_rvi P2 45.757 1.626 0.106 19.318 0.67 0.504 -85.134 -1.316 0.191
mna_rvi P1 -29.682 -1.114 0.267 -27.34 -1.005 0.317 81.98 1.291 0.199
mna_rvi P2 19.755 0.678 0.499 5.534 0.194 0.847 -44.485 -0.654 0.514
tipi_agree_rvi P1 23.157 0.644 0.521 12.69 0.336 0.737 -29.891 -0.343 0.732
tipi_agree_rvi P2 61.391 1.523 0.13 50.125 1.305 0.194 -129.817 -1.395 0.165
tipi_consci_rvi P1 4.529 0.1 0.921 -21.646 -0.546 0.586 50.565 0.449 0.654
tipi_consci_rvi P2 75.018 1.758 0.081 74.87 1.53 0.128 -206.932 -1.707 0.09
tipi_extra_rvi P1 38.836 0.978 0.33 42.798 0.9 0.37 -43.43 -0.438 0.662
tipi_extra_rvi P2 70.818 1.372 0.172 54.486 1.264 0.208 -104.066 -0.967 0.335
tipi_neuro_rvi P1 3.96 0.101 0.92 -18.53 -0.486 0.627 29.634 0.335 0.738
tipi_neuro_rvi P2 22.776 0.552 0.582 14.646 0.345 0.73 -49.939 -0.522 0.603
tipi_open_rvi P1 34.341 1.073 0.285 36.677 0.914 0.363 -76.28 -0.735 0.464
tipi_open_rvi P2 91.264 2.142 0.034 74.749 2.2 0.029 -235.358 -2.137 0.034
mpa_mssd P1 -0.002 -0.359 0.721 0.006 0.893 0.374 0 0.011 0.991
mpa_mssd P2 -0.003 -0.356 0.722 -0.006 -0.915 0.362 0 0.562 0.575
mna_mssd P1 -0.016 -2.617 0.01 -0.002 -0.368 0.714 0 1.798 0.074
mna_mssd P2 -0.008 -1.131 0.26 -0.011 -1.74 0.084 0 0.9 0.37
tipi_agree_mssd P1 -1.444 -0.785 0.434 -0.5 -0.229 0.819 0.191 0.257 0.797
tipi_agree_mssd P2 -0.169 -0.073 0.942 0.033 0.017 0.987 -0.663 -0.838 0.403
tipi_consci_mssd P1 1.588 0.934 0.352 1.615 0.878 0.382 -0.363 -0.813 0.418
tipi_consci_mssd P2 0.112 0.057 0.955 1.542 0.848 0.398 -0.629 -1.315 0.191
tipi_extra_mssd P1 1.853 1.248 0.214 3.306 1.471 0.144 -0.381 -0.738 0.462
tipi_extra_mssd P2 1.004 0.411 0.682 1.277 0.791 0.43 0.013 0.024 0.981
tipi_neuro_mssd P1 -0.402 -0.27 0.787 2.021 1 0.319 -0.07 -0.152 0.879
tipi_neuro_mssd P2 0.634 0.292 0.771 -0.234 -0.146 0.884 -0.412 -0.829 0.408
tipi_open_mssd P1 0.853 0.523 0.602 2.959 1.191 0.236 -1.033 -1.058 0.292
tipi_open_mssd P2 1.339 0.498 0.619 1.237 0.701 0.484 -0.697 -0.661 0.51
mpa_rmssd P1 14.176 0.432 0.666 -13.973 -0.742 0.459 32.487 0.354 0.724
mpa_rmssd P2 29.763 1.469 0.144 4.228 0.12 0.905 -142.415 -1.441 0.152
mna_rmssd P1 -3.996 -0.146 0.884 -14.137 -0.776 0.439 49.535 0.572 0.568
mna_rmssd P2 22.06 1.14 0.256 8.956 0.309 0.758 -114.795 -1.249 0.214
tipi_agree_rmssd P1 48.164 1.889 0.061 31.537 1.231 0.22 -143.325 -1.235 0.219
tipi_agree_rmssd P2 62.325 2.282 0.024 26.215 0.964 0.337 -249.89 -2.019 0.045
tipi_consci_rmssd P1 72.061 1.735 0.085 -11.112 -0.623 0.534 -122.752 -0.606 0.546
tipi_consci_rmssd P2 23.008 1.172 0.243 32.4 0.709 0.48 -216.216 -0.97 0.334
tipi_extra_rmssd P1 61.328 2.081 0.039 89.557 2.143 0.034 -267.526 -1.636 0.104
tipi_extra_rmssd P2 79.026 1.726 0.087 44.848 1.388 0.167 -272.476 -1.52 0.131
tipi_neuro_rmssd P1 26.148 0.923 0.358 -15.002 -0.687 0.493 -12.801 -0.106 0.916
tipi_neuro_rmssd P2 23.662 1.006 0.316 14.248 0.466 0.642 -182.339 -1.398 0.164
tipi_open_rmssd P1 35.257 1.882 0.062 76.258 1.704 0.091 -302.887 -1.463 0.146
tipi_open_rmssd P2 72.909 1.52 0.131 37.683 1.877 0.063 -469.749 -2.118 0.036
h7_results$difference_tab %>%
  knitr::kable(
    caption = "Simple Regression Model with Difference Score"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Simple Regression Model with Difference Score
personality participant diff_est diff_tval diff_pval
mpa_sd P1 -0.109 -0.328 0.744
mpa_sd P2 -0.22 -0.616 0.539
mna_sd P1 -0.692 -2.245 0.026
mna_sd P2 -0.329 -0.977 0.33
tipi_agree_sd P1 -3.063 -0.462 0.645
tipi_agree_sd P2 1.413 0.197 0.844
tipi_consci_sd P1 -1.022 -0.165 0.869
tipi_consci_sd P2 4.23 0.634 0.527
tipi_extra_sd P1 -5.942 -1.066 0.288
tipi_extra_sd P2 -4.863 -0.808 0.42
tipi_neuro_sd P1 -8.564 -1.374 0.172
tipi_neuro_sd P2 -4.115 -0.609 0.543
tipi_open_sd P1 1.616 0.268 0.789
tipi_open_sd P2 2.924 0.45 0.653
mpa_rvi P1 -12.663 -0.87 0.386
mpa_rvi P2 -11.977 -0.758 0.45
mna_rvi P1 -17.814 -1.375 0.172
mna_rvi P2 -0.821 -0.059 0.953
tipi_agree_rvi P1 12.188 0.745 0.458
tipi_agree_rvi P2 14.185 0.808 0.42
tipi_consci_rvi P1 -9.539 -0.637 0.525
tipi_consci_rvi P2 21.487 1.339 0.183
tipi_extra_rvi P1 -12.478 -0.782 0.435
tipi_extra_rvi P2 -6.156 -0.357 0.721
tipi_neuro_rvi P1 -13.599 -0.878 0.382
tipi_neuro_rvi P2 -5.885 -0.352 0.726
tipi_open_rvi P1 13.576 0.928 0.355
tipi_open_rvi P2 11.063 0.704 0.483
mpa_mssd P1 0.001 0.301 0.764
mpa_mssd P2 -0.004 -0.858 0.393
mna_mssd P1 -0.008 -1.663 0.099
mna_mssd P2 -0.008 -1.479 0.141
tipi_agree_mssd P1 -0.365 -0.298 0.766
tipi_agree_mssd P2 -1.071 -0.811 0.419
tipi_consci_mssd P1 0.873 0.647 0.518
tipi_consci_mssd P2 -0.261 -0.18 0.858
tipi_extra_mssd P1 0.47 0.463 0.644
tipi_extra_mssd P2 0.108 0.099 0.922
tipi_neuro_mssd P1 -0.499 -0.418 0.677
tipi_neuro_mssd P2 -1.432 -1.117 0.266
tipi_open_mssd P1 0.355 0.301 0.764
tipi_open_mssd P2 0.609 0.479 0.632
mpa_rmssd P1 -23.421 -1.394 0.166
mpa_rmssd P2 -0.335 -0.018 0.985
mna_rmssd P1 -17.441 -1.081 0.282
mna_rmssd P2 7.949 0.46 0.647
tipi_agree_rmssd P1 34.64 1.746 0.083
tipi_agree_rmssd P2 28.988 1.356 0.177
tipi_consci_rmssd P1 -10.283 -0.756 0.451
tipi_consci_rmssd P2 11.632 0.794 0.429
tipi_extra_rmssd P1 24.446 1.019 0.31
tipi_extra_rmssd P2 3.679 0.142 0.887
tipi_neuro_rmssd P1 -7.464 -0.46 0.646
tipi_neuro_rmssd P2 -0.783 -0.045 0.964
tipi_open_rmssd P1 27.474 1.721 0.088
tipi_open_rmssd P2 13.081 0.757 0.45
fluctuation_tab %>%
  knitr::kable(
    caption = "Simple Regression Model with Fluctuations"
  ) %>%
  kable_styling("striped") %>%
  scroll_box(height = "300px")
Simple Regression Model with Fluctuations
personality participant z_est z_tval z_pval
mpa_z P1 13.925 2.61 0.01
mpa_z P2 13.909 2.393 0.018
mna_z P1 0.686 0.137 0.892
mna_z P2 5.49 1.028 0.306
tipi_agree_z P1 -7.518 -1.395 0.165
tipi_agree_z P2 0.389 0.067 0.947
tipi_consci_z P1 4.025 0.574 0.567
tipi_consci_z P2 7.746 1.033 0.304
tipi_extra_z P1 20.604 2.87 0.005
tipi_extra_z P2 14.564 1.851 0.066
tipi_neuro_z P1 6.869 1.067 0.288
tipi_neuro_z P2 13.643 1.987 0.049
tipi_open_z P1 3.657 0.599 0.55
tipi_open_z P2 1.968 0.3 0.764

Simple slope analysis for significant interaction effects

# openness rvi - P2 Satisfaction
ss_wide_df <- baseline %>%
  pivot_wider(id_cols = "Couple_ID",
              names_from = "P_num",
              values_from = c("tipi_open_rvi", "csi_overall"))
nice_slopes(
  data = ss_wide_df,
  response = "csi_overall_2",
  predictor = "tipi_open_rvi_2",
  moderator = "tipi_open_rvi_1") %>%
  knitr::kable(
    caption = "Simple slope analysis"
  ) %>% 
  kableExtra::kable_styling()
Simple slope analysis
Dependent Variable Predictor (+/-1 SD) df B t p sr2 CI_lower CI_upper
csi_overall_2 tipi_open_rvi_2 (LOW-tipi_open_rvi_1) 133 0.249 1.887 0.061 0.026 0 0.078
csi_overall_2 tipi_open_rvi_2 (MEAN-tipi_open_rvi_1) 133 0.075 0.846 0.399 0.005 0 0.029
csi_overall_2 tipi_open_rvi_2 (HIGH-tipi_open_rvi_1) 133 -0.100 -0.931 0.354 0.006 0 0.032

Exploratory Model: Coupled Damped Oscillator

# make sure all time points are present
template <- expand.grid(Couple_ID = unique(esm$Couple_ID),
                        P_num = 1:2,
                        time_idx = 0:34)

# left join the template with esm so all missing rows are present
rties_dat <- left_join(template, esm, by = c("Couple_ID", "P_num", "time_idx"))

# drop duplicates if any
rties_dat <- rties_dat[!duplicated(rties_dat), ]

# prep data according to rties instructions
rties_dat$couple <- rties_dat$Couple_ID - 1000
rties_dat$person <- ifelse(rties_dat$P_num == 1, 
                           rties_dat$couple, rties_dat$couple + 500)

# remove duplicated data at same time_idx
rties_dat <- rties_dat[!duplicated(rties_dat[c("Couple_ID", "P_num", "time_idx")])| 
                        duplicated(rties_dat[c("Couple_ID", "P_num", "time_idx")], 
                                   fromLast = TRUE), ]

# fix time_idx to start at 1
rties_dat$time_idx <- rties_dat$time_idx + 1

## use rties::dataPrep()
#prepped_dat <- dataPrep(basedata = rties_dat, 
#                        dyadId = "couple", personId = "person",
#                        obs_name = "tipi_neuro", dist_name = "P_num",
#                        time_name = "time_idx")
#
#
### test taus, embeds, and delta
## not successful
#taus <- c(4,5)
#embeds <- c(3,4,5)
#delta <- 1
#
#derivs <- estDerivs(prepData=prepped_dat, taus=taus, embeds=embeds, delta=delta, 
#                    idConvention=500)

Dynamic Dyadic Plots

Here are dynamic dyadic plots of both partners from a random selection of couples who provided at least 28 shared datapoints (80% completion rate).

# random selection of couples with at least 28 shared datapoints
set.seed(202403)
id_list <- baseline %>% filter(tipi_open_n >= 28) %>%
  pull(Couple_ID) %>%
  unique()
id_random <- sample(id_list, size = 9)

# update time to hour unit
old_time <- 1:35
new_time <- c(seq(from = 0, to = 12, by = 3),
              seq(from = 0, to = 12, by = 3)+24*1,
              seq(from = 0, to = 12, by = 3)+24*2,
              seq(from = 0, to = 12, by = 3)+24*3,
              seq(from = 0, to = 12, by = 3)+24*4,
              seq(from = 0, to = 12, by = 3)+24*5,
              seq(from = 0, to = 12, by = 3)+24*6)
rties_dat$new_time <- NA
for (i in seq_along(old_time)) {
  # Update the corresponding value in time with the value from new_time
  rties_dat$new_time[rties_dat$time_idx == old_time[i]] <- new_time[i]
}
rties_dat$time_idx <- rties_dat$new_time

# plot random couples
plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="mna", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Negative Affect", printPlots = F)

plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="mpa", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Positive Affect", printPlots = F)

plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="tipi_agree", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Agreeableness", printPlots = F)

plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="tipi_consci", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Conscientiousness", printPlots = F)

plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="tipi_extra", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Extraversion", printPlots = F)

plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="tipi_neuro", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Neuroticism", printPlots = F)

plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="tipi_open", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Openness", printPlots = F)

plot_timeseries(basedata=rties_dat %>% filter(Couple_ID %in% id_random), 
                dyad="couple", 
                obs_name="csi_short", 
                dist_name="P_num", 
                time_name="time_idx", 
                dist0name="P2", dist1name= "P1", 
                plot_obs_name="Relationship Satisfaction", printPlots = F)

To further highlight the effects of co-fluctuations in positive affect, here are dynamic dyadic plots of both partners from a random selection of couples who provided at least 28 shared datapoints (80% completion rate), separated by high and low (top and bottom 20%) relationship satisfaction.

set.seed(202403)
baseline_wide <- baseline %>%
  pivot_wider(id_cols = "Couple_ID",
              names_from = "P_num",
              values_from = c("tipi_open_n", "csi_overall"))
thresholds <- quantile(baseline$csi_overall, probs = c(0.20, 0.80))
high_list <- baseline_wide %>% 
  filter(
    tipi_open_n_1 >= 28,
    csi_overall_1 >= thresholds[2],
    csi_overall_2 >= thresholds[2]) %>%
  pull(Couple_ID) %>%
  unique()
high_random <- sample(high_list, size = 9)

low_list <- baseline_wide %>% 
  filter(
    tipi_open_n_1 >= 28,
    csi_overall_1 <= thresholds[1],
    csi_overall_2 <= thresholds[1]) %>%
  pull(Couple_ID) %>%
  unique()
low_random <- sample(low_list, size = 9)

plot_timeseries(
  basedata=rties_dat %>% filter(Couple_ID %in% high_random), 
  dyad="couple", 
  obs_name="mpa", 
  dist_name="P_num", 
  time_name="time_idx", 
  dist0name="P2", dist1name= "P1", 
  plot_obs_name="Positive Affect", printPlots = F,
  .title = "Co-Fluctuations on Positive Affect for High Satisfaction Couples")

plot_timeseries(
  basedata=rties_dat %>% filter(Couple_ID %in% low_random), 
  dyad="couple", 
  obs_name="mpa", 
  dist_name="P_num", 
  time_name="time_idx", 
  dist0name="P2", dist1name= "P1", 
  plot_obs_name="Positive Affect", printPlots = F,
  .title = "Co-Fluctuations on Positive Affect for Low Satisfaction Couples")

To further highlight the effects of co-fluctuations in positive affect, here are dynamic dyadic plots of both partners from a random selection of couples who provided at least 28 shared datapoints (80% completion rate), separated by high and low (top and bottom 20%) relationship duration

set.seed(202403)
baseline_wide <- baseline %>%
  pivot_wider(id_cols = "Couple_ID",
              names_from = "P_num",
              values_from = c("tipi_open_n", "duration"))
thresholds <- quantile(baseline$duration, probs = c(0.20, 0.80))
high_list <- baseline_wide %>% 
  filter(
    tipi_open_n_1 >= 28,
    duration_1 >= thresholds[2],
    duration_2 >= thresholds[2]) %>%
  pull(Couple_ID) %>%
  unique()
high_random <- sample(high_list, size = 9)

low_list <- baseline_wide %>% 
  filter(
    tipi_open_n_1 >= 28,
    duration_1 <= thresholds[1],
    duration_2 <= thresholds[1]) %>%
  pull(Couple_ID) %>%
  unique()
low_random <- sample(low_list, size = 9)

plot_timeseries(
  basedata=rties_dat %>% filter(Couple_ID %in% high_random), 
  dyad="couple", 
  obs_name="mpa", 
  dist_name="P_num", 
  time_name="time_idx", 
  dist0name="P2", dist1name= "P1", 
  plot_obs_name="Positive Affect", printPlots = F,
  .title = "Co-Fluctuations on Positive Affect for Long-Term Couples")

plot_timeseries(
  basedata=rties_dat %>% filter(Couple_ID %in% low_random), 
  dyad="couple", 
  obs_name="mpa", 
  dist_name="P_num", 
  time_name="time_idx", 
  dist0name="P2", dist1name= "P1", 
  plot_obs_name="Positive Affect", printPlots = F,
  .title = "Co-Fluctuations on Positive Affect for Short-Term Couples")