MPS Survey analyses

Analyses

Note: For these analyses, I filtered on participants who identified as women.

Compare Difference in Year

My job makes good use of my skills and abilities

## 
##  Welch Two Sample t-test
## 
## data:  useskills by year
## t = -9, df = 4427, p-value <0.0000000000000002
## alternative hypothesis: true difference in means between group 2016 and group 2021 is not equal to 0
## 95 percent confidence interval:
##  -0.25 -0.16
## sample estimates:
## mean in group 2016 mean in group 2021 
##                3.9                4.1

I have the resources to do my job well.

## 
##  Welch Two Sample t-test
## 
## data:  resourceswell by year
## t = -9, df = 4454, p-value <0.0000000000000002
## alternative hypothesis: true difference in means between group 2016 and group 2021 is not equal to 0
## 95 percent confidence interval:
##  -0.26 -0.17
## sample estimates:
## mean in group 2016 mean in group 2021 
##                3.7                3.9

During your career, would you like to: Continue in your current job and role at the same level of responsibility

## 
##  Welch Two Sample t-test
## 
## data:  liketo_contjob by year
## t = -0.1, df = 4775, p-value = 0.9
## alternative hypothesis: true difference in means between group 2016 and group 2021 is not equal to 0
## 95 percent confidence interval:
##  -0.053  0.046
## sample estimates:
## mean in group 2016 mean in group 2021 
##                3.8                3.8

During your career, would you like to: Take on new challenges, assignments, or roles in your current job

## 
##  Welch Two Sample t-test
## 
## data:  liketo_newchall by year
## t = -14, df = 4136, p-value <0.0000000000000002
## alternative hypothesis: true difference in means between group 2016 and group 2021 is not equal to 0
## 95 percent confidence interval:
##  -0.40 -0.31
## sample estimates:
## mean in group 2016 mean in group 2021 
##                3.7                4.0

During your career, would you like to: Take on supervisory or managerial responsibilities.

## 
##  Welch Two Sample t-test
## 
## data:  liketo_super by year
## t = 18, df = 4981, p-value <0.0000000000000002
## alternative hypothesis: true difference in means between group 2016 and group 2021 is not equal to 0
## 95 percent confidence interval:
##  0.41 0.50
## sample estimates:
## mean in group 2016 mean in group 2021 
##                3.8                3.4

During your career, would you like to: Reduce work hours or responsibilities

## 
##  Welch Two Sample t-test
## 
## data:  liketo_reduc by year
## t = 70, df = 3999, p-value <0.0000000000000002
## alternative hypothesis: true difference in means between group 2016 and group 2021 is not equal to 0
## 95 percent confidence interval:
##  1.7 1.8
## sample estimates:
## mean in group 2016 mean in group 2021 
##                3.8                2.1

In the past 2 years, an agency official (e.g., supervisor, manager, senior leader, etc.) in my work unit has discriminated in favor or against someone in a personnel action based upon…

## 
##  Welch Two Sample t-test
## 
## data:  discsex by year
## t = 136, df = 3666, p-value <0.0000000000000002
## alternative hypothesis: true difference in means between group 2016 and group 2021 is not equal to 0
## 95 percent confidence interval:
##  1.6 1.6
## sample estimates:
## mean in group 2016 mean in group 2021 
##                2.7                1.1

Graphs

Compare Difference in Gender Composition

Note: all responses are RELATIVE to the response option “1 Subs. M>W”; this means that people indicated there were substantially more men than women.

My job makes good use of my skills and abilities

## 
## Call:
## lm(formula = useskills ~ gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.173 -0.173 -0.038  0.854  1.005 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                  4.0670     0.0163  249.10 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W     0.0793     0.0257    3.09                0.002 ** 
## gendercomp_text3 W=M         0.1056     0.0237    4.45            0.0000087 ***
## gendercomp_text4 Sl. W>M    -0.0287     0.0301   -0.95                0.340    
## gendercomp_text5 Subs. W>M  -0.0717     0.0310   -2.31                0.021 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 13063 degrees of freedom
## Multiple R-squared:  0.00374,    Adjusted R-squared:  0.00344 
## F-statistic: 12.3 on 4 and 13063 DF,  p-value: 0.000000000585

I have the resources to do my job well.

## 
## Call:
## lm(formula = resourceswell ~ gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.918 -0.779  0.218  1.082  1.266 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                 3.78163    0.01734  218.10 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W    0.07927    0.02727    2.91               0.0037 ** 
## gendercomp_text3 W=M        0.13612    0.02520    5.40          0.000000067 ***
## gendercomp_text4 Sl. W>M   -0.00227    0.03192   -0.07               0.9432    
## gendercomp_text5 Subs. W>M -0.04780    0.03292   -1.45               0.1465    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 13063 degrees of freedom
## Multiple R-squared:  0.00369,    Adjusted R-squared:  0.00338 
## F-statistic: 12.1 on 4 and 13063 DF,  p-value: 0.000000000844

During your career, would you like to: Continue in your current job and role at the same level of responsibility

## 
## Call:
## lm(formula = liketo_contjob ~ gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.886 -0.792  0.208  1.114  1.292 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                  3.7922     0.0195  194.03 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W     0.0237     0.0307    0.77              0.44082    
## gendercomp_text3 W=M         0.0939     0.0284    3.31              0.00095 ***
## gendercomp_text4 Sl. W>M    -0.0314     0.0360   -0.87              0.38249    
## gendercomp_text5 Subs. W>M  -0.0847     0.0371   -2.28              0.02248 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 13063 degrees of freedom
## Multiple R-squared:  0.00212,    Adjusted R-squared:  0.00181 
## F-statistic: 6.93 on 4 and 13063 DF,  p-value: 0.0000145

During your career, would you like to: Take on new challenges, assignments, or roles in your current job

## 
## Call:
## lm(formula = liketo_newchall ~ gendercomp_text, data = mps_w)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0523 -0.0523  0.0357  1.0274  1.2089 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                 3.96429    0.01748  226.73 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W    0.00827    0.02750    0.30              0.76370    
## gendercomp_text3 W=M        0.08805    0.02541    3.47              0.00053 ***
## gendercomp_text4 Sl. W>M   -0.08543    0.03219   -2.65              0.00796 ** 
## gendercomp_text5 Subs. W>M -0.17319    0.03320   -5.22           0.00000018 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 13063 degrees of freedom
## Multiple R-squared:  0.00536,    Adjusted R-squared:  0.00505 
## F-statistic: 17.6 on 4 and 13063 DF,  p-value: 0.0000000000000211

During your career, would you like to: Take on supervisory or managerial responsibilities.

## 
## Call:
## lm(formula = liketo_super ~ gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.584 -0.584  0.416  1.416  1.608 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                  3.3922     0.0202  168.02 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W     0.0685     0.0317    2.16              0.03096 *  
## gendercomp_text3 W=M         0.1358     0.0293    4.63           0.00000371 ***
## gendercomp_text4 Sl. W>M     0.1918     0.0372    5.16           0.00000025 ***
## gendercomp_text5 Subs. W>M   0.1361     0.0383    3.55              0.00039 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 13063 degrees of freedom
## Multiple R-squared:  0.00289,    Adjusted R-squared:  0.00259 
## F-statistic: 9.48 on 4 and 13063 DF,  p-value: 0.00000012

During your career, would you like to: Reduce work hours or responsibilities

## 
## Call:
## lm(formula = liketo_reduc ~ gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -1.85  -1.24  -0.24   0.76   2.76 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                  2.2396     0.0201  111.42 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W     0.0908     0.0316    2.87               0.0041 ** 
## gendercomp_text3 W=M         0.2027     0.0292    6.94      0.0000000000041 ***
## gendercomp_text4 Sl. W>M     0.5602     0.0370   15.14 < 0.0000000000000002 ***
## gendercomp_text5 Subs. W>M   0.6061     0.0382   15.88 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 13063 degrees of freedom
## Multiple R-squared:  0.0304, Adjusted R-squared:  0.0301 
## F-statistic:  102 on 4 and 13063 DF,  p-value: <0.0000000000000002

In the past 2 years, an agency official (e.g., supervisor, manager, senior leader, etc.) in my work unit has discriminated in favor or against someone in a personnel action based upon…

## 
## Call:
## lm(formula = discsex ~ gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.929 -0.455 -0.274  0.545  1.726 
## 
## Coefficients:
##                            Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                  1.2737     0.0125  101.59 <0.0000000000000002 ***
## gendercomp_text2 Sl. M>W     0.0635     0.0197    3.22              0.0013 ** 
## gendercomp_text3 W=M         0.1810     0.0182    9.93 <0.0000000000000002 ***
## gendercomp_text4 Sl. W>M     0.5347     0.0231   23.16 <0.0000000000000002 ***
## gendercomp_text5 Subs. W>M   0.6555     0.0238   27.54 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.78 on 13063 degrees of freedom
## Multiple R-squared:  0.0804, Adjusted R-squared:  0.0801 
## F-statistic:  285 on 4 and 13063 DF,  p-value: <0.0000000000000002

Graphs

Interactions

Pre-registered: Gender composition by year

My job makes good use of my skills and abilities

## 
## Call:
## lm(formula = useskills ~ year * gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.228 -0.228 -0.007  0.783  1.220 
## 
## Coefficients:
##                                     Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                          3.96791    0.05226   75.92 < 0.0000000000000002 ***
## year2021                             0.10971    0.05499    2.00               0.0461 *  
## gendercomp_text2 Sl. M>W            -0.18804    0.06981   -2.69               0.0071 ** 
## gendercomp_text3 W=M                 0.03883    0.06411    0.61               0.5447    
## gendercomp_text4 Sl. W>M            -0.00374    0.06524   -0.06               0.9543    
## gendercomp_text5 Subs. W>M          -0.02773    0.06556   -0.42               0.6723    
## year2021:gendercomp_text2 Sl. M>W    0.33817    0.07511    4.50            0.0000068 ***
## year2021:gendercomp_text3 W=M        0.10101    0.06911    1.46               0.1439    
## year2021:gendercomp_text4 Sl. W>M    0.01682    0.07501    0.22               0.8225    
## year2021:gendercomp_text5 Subs. W>M -0.01144    0.07628   -0.15               0.8808    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 13058 degrees of freedom
## Multiple R-squared:  0.0125, Adjusted R-squared:  0.0118 
## F-statistic: 18.3 on 9 and 13058 DF,  p-value: <0.0000000000000002

Estimated marginal means

Comparing groups across years

Comparing years across groups

I have the resources to do my job well.

## 
## Call:
## lm(formula = resourceswell ~ year * gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.976 -0.718  0.202  1.024  1.520 
## 
## Coefficients:
##                                     Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                           3.6283     0.0555   65.39 < 0.0000000000000002 ***
## year2021                              0.1697     0.0584    2.91              0.00366 ** 
## gendercomp_text2 Sl. M>W             -0.1483     0.0741   -2.00              0.04547 *  
## gendercomp_text3 W=M                  0.0748     0.0681    1.10              0.27204    
## gendercomp_text4 Sl. W>M              0.0896     0.0693    1.29              0.19597    
## gendercomp_text5 Subs. W>M            0.0726     0.0696    1.04              0.29709    
## year2021:gendercomp_text2 Sl. M>W     0.2957     0.0797    3.71              0.00021 ***
## year2021:gendercomp_text3 W=M         0.1031     0.0734    1.40              0.16013    
## year2021:gendercomp_text4 Sl. W>M    -0.0648     0.0796   -0.81              0.41556    
## year2021:gendercomp_text5 Subs. W>M  -0.1110     0.0810   -1.37              0.17045    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 13058 degrees of freedom
## Multiple R-squared:  0.0131, Adjusted R-squared:  0.0124 
## F-statistic: 19.2 on 9 and 13058 DF,  p-value: <0.0000000000000002

Estimated marginal means

Comparing groups across years

Comparing years across groups

During your career, would you like to: Continue in your current job and role at the same level of responsibility.

## 
## Call:
## lm(formula = liketo_contjob ~ year * gendercomp_text, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.959 -0.799  0.201  1.134  1.350 
## 
## Coefficients:
##                                     Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                           3.7273     0.0628   59.36 <0.0000000000000002 ***
## year2021                              0.0719     0.0661    1.09              0.2763    
## gendercomp_text2 Sl. M>W             -0.0774     0.0839   -0.92              0.3562    
## gendercomp_text3 W=M                  0.2322     0.0770    3.02              0.0026 ** 
## gendercomp_text4 Sl. W>M              0.1205     0.0784    1.54              0.1242    
## gendercomp_text5 Subs. W>M            0.0197     0.0788    0.25              0.8029    
## year2021:gendercomp_text2 Sl. M>W     0.1310     0.0902    1.45              0.1466    
## year2021:gendercomp_text3 W=M        -0.1652     0.0830   -1.99              0.0466 *  
## year2021:gendercomp_text4 Sl. W>M    -0.2203     0.0901   -2.44              0.0145 *  
## year2021:gendercomp_text5 Subs. W>M  -0.1422     0.0916   -1.55              0.1208    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 13058 degrees of freedom
## Multiple R-squared:  0.00384,    Adjusted R-squared:  0.00316 
## F-statistic:  5.6 on 9 and 13058 DF,  p-value: 0.0000000955

Estimated marginal means

Comparing groups across years

Comparing years across groups

During your career, would you like to: Take on new challenges, assignments, or roles in your current job.

## 
## Call:
## lm(formula = liketo_newchall ~ year * gendercomp_text, data = mps_w)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1111 -0.1111  0.0095  0.9143  1.5367 
## 
## Coefficients:
##                                     Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                           3.6604     0.0557   65.72 < 0.0000000000000002 ***
## year2021                              0.3364     0.0586    5.74         0.0000000096 ***
## gendercomp_text2 Sl. M>W             -0.1971     0.0744   -2.65              0.00807 ** 
## gendercomp_text3 W=M                  0.1749     0.0683    2.56              0.01046 *  
## gendercomp_text4 Sl. W>M              0.0605     0.0695    0.87              0.38445    
## gendercomp_text5 Subs. W>M           -0.0132     0.0699   -0.19              0.85028    
## year2021:gendercomp_text2 Sl. M>W     0.2860     0.0800    3.57              0.00035 ***
## year2021:gendercomp_text3 W=M        -0.0607     0.0736   -0.82              0.41009    
## year2021:gendercomp_text4 Sl. W>M    -0.0668     0.0799   -0.84              0.40327    
## year2021:gendercomp_text5 Subs. W>M  -0.0798     0.0813   -0.98              0.32619    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 13058 degrees of freedom
## Multiple R-squared:  0.0238, Adjusted R-squared:  0.0231 
## F-statistic: 35.4 on 9 and 13058 DF,  p-value: <0.0000000000000002

Estimated marginal means

Comparing groups across years

Comparing years across groups

During your career, would you like to: Take on supervisory or managerial responsibilities.

## 
## Call:
## lm(formula = liketo_super ~ year * gendercomp_text, data = mps_w)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9271 -0.7888  0.0925  1.0729  1.6623 
## 
## Coefficients:
##                                     Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                          3.78877    0.06422   59.00 < 0.0000000000000002 ***
## year2021                            -0.43901    0.06757   -6.50       0.000000000085 ***
## gendercomp_text2 Sl. M>W            -0.07598    0.08578   -0.89                0.376    
## gendercomp_text3 W=M                 0.13836    0.07877    1.76                0.079 .  
## gendercomp_text4 Sl. W>M             0.11869    0.08016    1.48                0.139    
## gendercomp_text5 Subs. W>M          -0.01730    0.08056   -0.21                0.830    
## year2021:gendercomp_text2 Sl. M>W    0.13098    0.09229    1.42                0.156    
## year2021:gendercomp_text3 W=M       -0.06816    0.08492   -0.80                0.422    
## year2021:gendercomp_text4 Sl. W>M   -0.11296    0.09217   -1.23                0.220    
## year2021:gendercomp_text5 Subs. W>M  0.00528    0.09373    0.06                0.955    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 13058 degrees of freedom
## Multiple R-squared:  0.0242, Adjusted R-squared:  0.0236 
## F-statistic:   36 on 9 and 13058 DF,  p-value: <0.0000000000000002

Estimated marginal means

Comparing groups across years

Comparing years across groups

During your career, would you like to: Reduce work hours or responsibilities

## 
## Call:
## lm(formula = liketo_reduc ~ year * gendercomp_text, data = mps_w)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9177 -1.0405 -0.0428  0.9212  2.9620 
## 
## Coefficients:
##                                     Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                           3.7406     0.0537   69.61 <0.0000000000000002 ***
## year2021                             -1.6619     0.0565  -29.39 <0.0000000000000002 ***
## gendercomp_text2 Sl. M>W             -0.1054     0.0718   -1.47              0.1419    
## gendercomp_text3 W=M                  0.1770     0.0659    2.69              0.0072 ** 
## gendercomp_text4 Sl. W>M              0.1370     0.0671    2.04              0.0412 *  
## gendercomp_text5 Subs. W>M            0.0278     0.0674    0.41              0.6805    
## year2021:gendercomp_text2 Sl. M>W     0.0672     0.0772    0.87              0.3845    
## year2021:gendercomp_text3 W=M        -0.2130     0.0711   -3.00              0.0027 ** 
## year2021:gendercomp_text4 Sl. W>M    -0.1778     0.0771   -2.30              0.0212 *  
## year2021:gendercomp_text5 Subs. W>M   0.0161     0.0784    0.20              0.8378    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 13058 degrees of freedom
## Multiple R-squared:  0.33,   Adjusted R-squared:  0.329 
## F-statistic:  713 on 9 and 13058 DF,  p-value: <0.0000000000000002

Estimated marginal means

Comparing groups across years

Comparing years across groups

In the past 2 years, an agency official (e.g., supervisor, manager, senior leader, etc.) in my work unit has discriminated in favor or against someone in a personnel action based upon…

## 
## Call:
## lm(formula = discsex ~ year * gendercomp_text, data = mps_w)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8016 -0.1226 -0.0899 -0.0796  1.9204 
## 
## Coefficients:
##                                     Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                           2.6845     0.0233  115.46 < 0.0000000000000002 ***
## year2021                             -1.5619     0.0245  -63.84 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W             -0.1876     0.0311   -6.04         0.0000000016 ***
## gendercomp_text3 W=M                  0.1171     0.0285    4.11         0.0000403790 ***
## gendercomp_text4 Sl. W>M              0.1051     0.0290    3.62              0.00030 ***
## gendercomp_text5 Subs. W>M            0.1146     0.0292    3.93         0.0000858377 ***
## year2021:gendercomp_text2 Sl. M>W     0.1447     0.0334    4.33         0.0000150309 ***
## year2021:gendercomp_text3 W=M        -0.1498     0.0307   -4.87         0.0000011130 ***
## year2021:gendercomp_text4 Sl. W>M    -0.1127     0.0334   -3.38              0.00074 ***
## year2021:gendercomp_text5 Subs. W>M   0.0104     0.0339    0.31              0.75909    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.45 on 13058 degrees of freedom
## Multiple R-squared:  0.694,  Adjusted R-squared:  0.694 
## F-statistic: 3.29e+03 on 9 and 13058 DF,  p-value: <0.0000000000000002

Estimated marginal means

Comparing groups across years

Comparing years across groups

Women of color

My job makes good use of my skills and abilities

## 
## Call:
## lm(formula = useskills ~ year * gendercomp_text * minority, data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.290 -0.235 -0.037  0.798  1.532 
## 
## Coefficients:
##                                                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                               3.95122    0.09052   43.65 < 0.0000000000000002 ***
## year2021                                                  0.11516    0.09630    1.20               0.2318    
## gendercomp_text2 Sl. M>W                                 -0.48369    0.12141   -3.98           0.00006813 ***
## gendercomp_text3 W=M                                     -0.04981    0.11369   -0.44               0.6613    
## gendercomp_text4 Sl. W>M                                 -0.14880    0.11072   -1.34               0.1790    
## gendercomp_text5 Subs. W>M                               -0.11597    0.10980   -1.06               0.2909    
## minorityNon-minority                                      0.03252    0.11087    0.29               0.7693    
## year2021:gendercomp_text2 Sl. M>W                         0.69131    0.13355    5.18           0.00000023 ***
## year2021:gendercomp_text3 W=M                             0.27298    0.12421    2.20               0.0280 *  
## year2021:gendercomp_text4 Sl. W>M                         0.30506    0.13092    2.33               0.0198 *  
## year2021:gendercomp_text5 Subs. W>M                       0.10863    0.12983    0.84               0.4028    
## year2021:minorityNon-minority                            -0.00722    0.11746   -0.06               0.9510    
## gendercomp_text2 Sl. M>W:minorityNon-minority             0.42830    0.14824    2.89               0.0039 ** 
## gendercomp_text3 W=M:minorityNon-minority                 0.11780    0.13768    0.86               0.3922    
## gendercomp_text4 Sl. W>M:minorityNon-minority             0.23012    0.13706    1.68               0.0932 .  
## gendercomp_text5 Subs. W>M:minorityNon-minority           0.14773    0.13696    1.08               0.2808    
## year2021:gendercomp_text2 Sl. M>W:minorityNon-minority   -0.49257    0.16174   -3.05               0.0023 ** 
## year2021:gendercomp_text3 W=M:minorityNon-minority       -0.23072    0.14973   -1.54               0.1234    
## year2021:gendercomp_text4 Sl. W>M:minorityNon-minority   -0.44155    0.16029   -2.75               0.0059 ** 
## year2021:gendercomp_text5 Subs. W>M:minorityNon-minority -0.16502    0.16097   -1.03               0.3053    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 12463 degrees of freedom
##   (585 observations deleted due to missingness)
## Multiple R-squared:  0.0177, Adjusted R-squared:  0.0162 
## F-statistic: 11.8 on 19 and 12463 DF,  p-value: <0.0000000000000002

I have the resources to do my job well.

## 
## Call:
## lm(formula = resourceswell ~ year * gendercomp_text * minority, 
##     data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.146 -0.721  0.218  1.055  1.701 
## 
## Coefficients:
##                                                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                                3.7398     0.0965   38.77 < 0.0000000000000002 ***
## year2021                                                   0.1381     0.1026    1.35              0.17835    
## gendercomp_text2 Sl. M>W                                  -0.4411     0.1294   -3.41              0.00065 ***
## gendercomp_text3 W=M                                      -0.0920     0.1211   -0.76              0.44787    
## gendercomp_text4 Sl. W>M                                  -0.0261     0.1180   -0.22              0.82473    
## gendercomp_text5 Subs. W>M                                -0.0425     0.1170   -0.36              0.71630    
## minorityNon-minority                                      -0.1707     0.1181   -1.45              0.14842    
## year2021:gendercomp_text2 Sl. M>W                          0.5492     0.1423    3.86              0.00011 ***
## year2021:gendercomp_text3 W=M                              0.3595     0.1324    2.72              0.00662 ** 
## year2021:gendercomp_text4 Sl. W>M                          0.0463     0.1395    0.33              0.74000    
## year2021:gendercomp_text5 Subs. W>M                       -0.0642     0.1383   -0.46              0.64255    
## year2021:minorityNon-minority                              0.0744     0.1252    0.59              0.55240    
## gendercomp_text2 Sl. M>W:minorityNon-minority              0.4328     0.1580    2.74              0.00616 ** 
## gendercomp_text3 W=M:minorityNon-minority                  0.2451     0.1467    1.67              0.09484 .  
## gendercomp_text4 Sl. W>M:minorityNon-minority              0.1775     0.1460    1.22              0.22422    
## gendercomp_text5 Subs. W>M:minorityNon-minority            0.1918     0.1459    1.31              0.18887    
## year2021:gendercomp_text2 Sl. M>W:minorityNon-minority    -0.3777     0.1723   -2.19              0.02843 *  
## year2021:gendercomp_text3 W=M:minorityNon-minority        -0.3730     0.1595   -2.34              0.01940 *  
## year2021:gendercomp_text4 Sl. W>M:minorityNon-minority    -0.1824     0.1708   -1.07              0.28550    
## year2021:gendercomp_text5 Subs. W>M:minorityNon-minority  -0.0927     0.1715   -0.54              0.58904    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 12463 degrees of freedom
##   (585 observations deleted due to missingness)
## Multiple R-squared:  0.0169, Adjusted R-squared:  0.0154 
## F-statistic: 11.3 on 19 and 12463 DF,  p-value: <0.0000000000000002

During your career, would you like to: Continue in your current job and role at the same level of responsibility.

## 
## Call:
## lm(formula = liketo_contjob ~ year * gendercomp_text * minority, 
##     data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.962 -0.790  0.167  1.126  1.669 
## 
## Coefficients:
##                                                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                                3.8049     0.1094   34.78 < 0.0000000000000002 ***
## year2021                                                  -0.0833     0.1164   -0.72              0.47439    
## gendercomp_text2 Sl. M>W                                  -0.4737     0.1467   -3.23              0.00125 ** 
## gendercomp_text3 W=M                                       0.1576     0.1374    1.15              0.25148    
## gendercomp_text4 Sl. W>M                                  -0.0549     0.1338   -0.41              0.68170    
## gendercomp_text5 Subs. W>M                                -0.1574     0.1327   -1.19              0.23564    
## minorityNon-minority                                      -0.1260     0.1340   -0.94              0.34694    
## year2021:gendercomp_text2 Sl. M>W                          0.5421     0.1614    3.36              0.00078 ***
## year2021:gendercomp_text3 W=M                             -0.0105     0.1501   -0.07              0.94399    
## year2021:gendercomp_text4 Sl. W>M                         -0.0630     0.1582   -0.40              0.69061    
## year2021:gendercomp_text5 Subs. W>M                        0.0594     0.1569    0.38              0.70518    
## year2021:minorityNon-minority                              0.2375     0.1419    1.67              0.09430 .  
## gendercomp_text2 Sl. M>W:minorityNon-minority              0.5924     0.1791    3.31              0.00095 ***
## gendercomp_text3 W=M:minorityNon-minority                  0.1214     0.1664    0.73              0.46549    
## gendercomp_text4 Sl. W>M:minorityNon-minority              0.2989     0.1656    1.80              0.07114 .  
## gendercomp_text5 Subs. W>M:minorityNon-minority            0.3002     0.1655    1.81              0.06972 .  
## year2021:gendercomp_text2 Sl. M>W:minorityNon-minority    -0.6123     0.1955   -3.13              0.00173 ** 
## year2021:gendercomp_text3 W=M:minorityNon-minority        -0.2278     0.1809   -1.26              0.20800    
## year2021:gendercomp_text4 Sl. W>M:minorityNon-minority    -0.2824     0.1937   -1.46              0.14485    
## year2021:gendercomp_text5 Subs. W>M:minorityNon-minority  -0.3074     0.1945   -1.58              0.11413    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 12463 degrees of freedom
##   (585 observations deleted due to missingness)
## Multiple R-squared:  0.0067, Adjusted R-squared:  0.00518 
## F-statistic: 4.42 on 19 and 12463 DF,  p-value: 0.00000000041

During your career, would you like to: Take on new challenges, assignments, or roles in your current job.

## 
## Call:
## lm(formula = liketo_newchall ~ year * gendercomp_text * minority, 
##     data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.246 -0.246  0.031  0.932  1.695 
## 
## Coefficients:
##                                                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                               3.69919    0.09704   38.12 < 0.0000000000000002 ***
## year2021                                                  0.38754    0.10324    3.75              0.00017 ***
## gendercomp_text2 Sl. M>W                                 -0.39399    0.13015   -3.03              0.00247 ** 
## gendercomp_text3 W=M                                      0.18814    0.12188    1.54              0.12272    
## gendercomp_text4 Sl. W>M                                 -0.07822    0.11869   -0.66              0.50991    
## gendercomp_text5 Subs. W>M                               -0.17428    0.11771   -1.48              0.13874    
## minorityNon-minority                                     -0.06911    0.11885   -0.58              0.56096    
## year2021:gendercomp_text2 Sl. M>W                         0.51127    0.14317    3.57              0.00036 ***
## year2021:gendercomp_text3 W=M                            -0.02910    0.13316   -0.22              0.82703    
## year2021:gendercomp_text4 Sl. W>M                         0.04810    0.14036    0.34              0.73183    
## year2021:gendercomp_text5 Subs. W>M                      -0.06004    0.13918   -0.43              0.66618    
## year2021:minorityNon-minority                            -0.04846    0.12592   -0.38              0.70036    
## gendercomp_text2 Sl. M>W:minorityNon-minority             0.29974    0.15892    1.89              0.05931 .  
## gendercomp_text3 W=M:minorityNon-minority                -0.00787    0.14759   -0.05              0.95746    
## gendercomp_text4 Sl. W>M:minorityNon-minority             0.24091    0.14693    1.64              0.10111    
## gendercomp_text5 Subs. W>M:minorityNon-minority           0.27805    0.14683    1.89              0.05828 .  
## year2021:gendercomp_text2 Sl. M>W:minorityNon-minority   -0.32561    0.17339   -1.88              0.06043 .  
## year2021:gendercomp_text3 W=M:minorityNon-minority       -0.05266    0.16052   -0.33              0.74286    
## year2021:gendercomp_text4 Sl. W>M:minorityNon-minority   -0.20535    0.17184   -1.20              0.23211    
## year2021:gendercomp_text5 Subs. W>M:minorityNon-minority -0.08377    0.17257   -0.49              0.62740    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 12463 degrees of freedom
##   (585 observations deleted due to missingness)
## Multiple R-squared:  0.0287, Adjusted R-squared:  0.0273 
## F-statistic: 19.4 on 19 and 12463 DF,  p-value: <0.0000000000000002

During your career, would you like to: Take on supervisory or managerial responsibilities.

## 
## Call:
## lm(formula = liketo_super ~ year * gendercomp_text * minority, 
##     data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.998 -0.779  0.158  1.070  1.725 
## 
## Coefficients:
##                                                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                                3.8211     0.1112   34.35 <0.0000000000000002 ***
## year2021                                                  -0.2644     0.1183   -2.23               0.025 *  
## gendercomp_text2 Sl. M>W                                  -0.2562     0.1492   -1.72               0.086 .  
## gendercomp_text3 W=M                                       0.1084     0.1397    0.78               0.438    
## gendercomp_text4 Sl. W>M                                  -0.0469     0.1361   -0.35               0.730    
## gendercomp_text5 Subs. W>M                                -0.1468     0.1349   -1.09               0.277    
## minorityNon-minority                                      -0.0528     0.1362   -0.39               0.698    
## year2021:gendercomp_text2 Sl. M>W                          0.3775     0.1641    2.30               0.021 *  
## year2021:gendercomp_text3 W=M                              0.0919     0.1526    0.60               0.547    
## year2021:gendercomp_text4 Sl. W>M                          0.0600     0.1609    0.37               0.709    
## year2021:gendercomp_text5 Subs. W>M                        0.0107     0.1595    0.07               0.946    
## year2021:minorityNon-minority                             -0.2293     0.1443   -1.59               0.112    
## gendercomp_text2 Sl. M>W:minorityNon-minority              0.2667     0.1822    1.46               0.143    
## gendercomp_text3 W=M:minorityNon-minority                  0.0505     0.1692    0.30               0.765    
## gendercomp_text4 Sl. W>M:minorityNon-minority              0.2762     0.1684    1.64               0.101    
## gendercomp_text5 Subs. W>M:minorityNon-minority            0.2209     0.1683    1.31               0.189    
## year2021:gendercomp_text2 Sl. M>W:minorityNon-minority    -0.3328     0.1988   -1.67               0.094 .  
## year2021:gendercomp_text3 W=M:minorityNon-minority        -0.2340     0.1840   -1.27               0.204    
## year2021:gendercomp_text4 Sl. W>M:minorityNon-minority    -0.2877     0.1970   -1.46               0.144    
## year2021:gendercomp_text5 Subs. W>M:minorityNon-minority  -0.0587     0.1978   -0.30               0.767    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 12463 degrees of freedom
##   (585 observations deleted due to missingness)
## Multiple R-squared:  0.0371, Adjusted R-squared:  0.0356 
## F-statistic: 25.3 on 19 and 12463 DF,  p-value: <0.0000000000000002

During your career, would you like to: Reduce work hours or responsibilities

## 
## Call:
## lm(formula = liketo_reduc ~ year * gendercomp_text * minority, 
##     data = mps_w)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.962 -0.997 -0.027  0.880  3.003 
## 
## Coefficients:
##                                                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                               3.69106    0.09333   39.55 <0.0000000000000002 ***
## year2021                                                 -1.57007    0.09929  -15.81 <0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                                 -0.34690    0.12517   -2.77              0.0056 ** 
## gendercomp_text3 W=M                                      0.27138    0.11722    2.32              0.0206 *  
## gendercomp_text4 Sl. W>M                                  0.11943    0.11415    1.05              0.2955    
## gendercomp_text5 Subs. W>M                               -0.00523    0.11321   -0.05              0.9631    
## minorityNon-minority                                      0.06098    0.11431    0.53              0.5937    
## year2021:gendercomp_text2 Sl. M>W                         0.35592    0.13769    2.58              0.0097 ** 
## year2021:gendercomp_text3 W=M                            -0.27231    0.12807   -2.13              0.0335 *  
## year2021:gendercomp_text4 Sl. W>M                        -0.21022    0.13498   -1.56              0.1194    
## year2021:gendercomp_text5 Subs. W>M                       0.12041    0.13385    0.90              0.3684    
## year2021:minorityNon-minority                            -0.13591    0.12110   -1.12              0.2618    
## gendercomp_text2 Sl. M>W:minorityNon-minority             0.36745    0.15284    2.40              0.0162 *  
## gendercomp_text3 W=M:minorityNon-minority                -0.12303    0.14194   -0.87              0.3861    
## gendercomp_text4 Sl. W>M:minorityNon-minority             0.06107    0.14131    0.43              0.6656    
## gendercomp_text5 Subs. W>M:minorityNon-minority           0.08007    0.14121    0.57              0.5707    
## year2021:gendercomp_text2 Sl. M>W:minorityNon-minority   -0.42515    0.16676   -2.55              0.0108 *  
## year2021:gendercomp_text3 W=M:minorityNon-minority        0.08271    0.15438    0.54              0.5921    
## year2021:gendercomp_text4 Sl. W>M:minorityNon-minority    0.01066    0.16526    0.06              0.9486    
## year2021:gendercomp_text5 Subs. W>M:minorityNon-minority -0.20490    0.16597   -1.23              0.2170    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 12463 degrees of freedom
##   (585 observations deleted due to missingness)
## Multiple R-squared:  0.342,  Adjusted R-squared:  0.341 
## F-statistic:  341 on 19 and 12463 DF,  p-value: <0.0000000000000002

In the past 2 years, an agency official (e.g., supervisor, manager, senior leader, etc.) in my work unit has discriminated in favor or against someone in a personnel action based upon…

## 
## Call:
## lm(formula = discsex ~ year * gendercomp_text * minority, data = mps_w)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8337 -0.1069 -0.0906  0.1663  1.9315 
## 
## Coefficients:
##                                                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                                2.5935     0.0403   64.42 < 0.0000000000000002 ***
## year2021                                                  -1.4393     0.0428  -33.60 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                                  -0.3532     0.0540   -6.54       0.000000000063 ***
## gendercomp_text3 W=M                                       0.1530     0.0506    3.03              0.00249 ** 
## gendercomp_text4 Sl. W>M                                   0.1444     0.0492    2.93              0.00337 ** 
## gendercomp_text5 Subs. W>M                                 0.1651     0.0488    3.38              0.00072 ***
## minorityNon-minority                                       0.1382     0.0493    2.80              0.00507 ** 
## year2021:gendercomp_text2 Sl. M>W                          0.3171     0.0594    5.34       0.000000095597 ***
## year2021:gendercomp_text3 W=M                             -0.2196     0.0552   -3.97       0.000070861281 ***
## year2021:gendercomp_text4 Sl. W>M                         -0.1665     0.0582   -2.86              0.00425 ** 
## year2021:gendercomp_text5 Subs. W>M                       -0.0278     0.0577   -0.48              0.63036    
## year2021:minorityNon-minority                             -0.1855     0.0522   -3.55              0.00039 ***
## gendercomp_text2 Sl. M>W:minorityNon-minority              0.2446     0.0659    3.71              0.00021 ***
## gendercomp_text3 W=M:minorityNon-minority                 -0.0609     0.0612   -1.00              0.31969    
## gendercomp_text4 Sl. W>M:minorityNon-minority             -0.0424     0.0610   -0.70              0.48693    
## gendercomp_text5 Subs. W>M:minorityNon-minority           -0.0674     0.0609   -1.11              0.26873    
## year2021:gendercomp_text2 Sl. M>W:minorityNon-minority    -0.2468     0.0719   -3.43              0.00060 ***
## year2021:gendercomp_text3 W=M:minorityNon-minority         0.1112     0.0666    1.67              0.09492 .  
## year2021:gendercomp_text4 Sl. W>M:minorityNon-minority     0.0608     0.0713    0.85              0.39401    
## year2021:gendercomp_text5 Subs. W>M:minorityNon-minority   0.0339     0.0716    0.47              0.63608    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.45 on 12463 degrees of freedom
##   (585 observations deleted due to missingness)
## Multiple R-squared:  0.705,  Adjusted R-squared:  0.704 
## F-statistic: 1.56e+03 on 19 and 12463 DF,  p-value: <0.0000000000000002

Gender composition by men

My job makes good use of my skills and abilities

## 
## Call:
## lm(formula = useskills ~ year * gendercomp_text * sex, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.255 -0.228  0.020  0.815  1.220 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                  3.96791    0.05264   75.38 < 0.0000000000000002 ***
## year2021                                     0.10971    0.05539    1.98               0.0476 *  
## gendercomp_text2 Sl. M>W                    -0.18804    0.07031   -2.67               0.0075 ** 
## gendercomp_text3 W=M                         0.03883    0.06457    0.60               0.5476    
## gendercomp_text4 Sl. W>M                    -0.00374    0.06571   -0.06               0.9547    
## gendercomp_text5 Subs. W>M                  -0.02773    0.06603   -0.42               0.6745    
## sexMale                                      0.02900    0.06195    0.47               0.6398    
## year2021:gendercomp_text2 Sl. M>W            0.33817    0.07565    4.47            0.0000079 ***
## year2021:gendercomp_text3 W=M                0.10101    0.06961    1.45               0.1468    
## year2021:gendercomp_text4 Sl. W>M            0.01682    0.07555    0.22               0.8238    
## year2021:gendercomp_text5 Subs. W>M         -0.01144    0.07683   -0.15               0.8817    
## year2021:sexMale                            -0.14375    0.07014   -2.05               0.0404 *  
## gendercomp_text2 Sl. M>W:sexMale             0.05421    0.08196    0.66               0.5083    
## gendercomp_text3 W=M:sexMale                -0.04071    0.07916   -0.51               0.6071    
## gendercomp_text4 Sl. W>M:sexMale            -0.01326    0.08641   -0.15               0.8781    
## gendercomp_text5 Subs. W>M:sexMale          -0.18157    0.09211   -1.97               0.0487 *  
## year2021:gendercomp_text2 Sl. M>W:sexMale   -0.02358    0.09848   -0.24               0.8108    
## year2021:gendercomp_text3 W=M:sexMale        0.19315    0.09062    2.13               0.0331 *  
## year2021:gendercomp_text4 Sl. W>M:sexMale    0.22270    0.10172    2.19               0.0286 *  
## year2021:gendercomp_text5 Subs. W>M:sexMale  0.32221    0.10673    3.02               0.0025 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.0151, Adjusted R-squared:  0.0144 
## F-statistic:   20 on 19 and 24768 DF,  p-value: <0.0000000000000002

I have the resources to do my job well.

## 
## Call:
## lm(formula = resourceswell ~ year * gendercomp_text * sex, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.976 -0.703  0.202  1.024  1.520 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   3.6283     0.0556   65.21 < 0.0000000000000002 ***
## year2021                                      0.1697     0.0585    2.90              0.00375 ** 
## gendercomp_text2 Sl. M>W                     -0.1483     0.0743   -1.99              0.04607 *  
## gendercomp_text3 W=M                          0.0748     0.0683    1.10              0.27339    
## gendercomp_text4 Sl. W>M                      0.0896     0.0695    1.29              0.19723    
## gendercomp_text5 Subs. W>M                    0.0726     0.0698    1.04              0.29845    
## sexMale                                       0.0637     0.0655    0.97              0.33050    
## year2021:gendercomp_text2 Sl. M>W             0.2957     0.0800    3.70              0.00022 ***
## year2021:gendercomp_text3 W=M                 0.1031     0.0736    1.40              0.16131    
## year2021:gendercomp_text4 Sl. W>M            -0.0648     0.0799   -0.81              0.41687    
## year2021:gendercomp_text5 Subs. W>M          -0.1110     0.0812   -1.37              0.17165    
## year2021:sexMale                             -0.1572     0.0741   -2.12              0.03396 *  
## gendercomp_text2 Sl. M>W:sexMale              0.0529     0.0866    0.61              0.54131    
## gendercomp_text3 W=M:sexMale                 -0.0459     0.0837   -0.55              0.58349    
## gendercomp_text4 Sl. W>M:sexMale             -0.1230     0.0913   -1.35              0.17808    
## gendercomp_text5 Subs. W>M:sexMale           -0.1039     0.0974   -1.07              0.28603    
## year2021:gendercomp_text2 Sl. M>W:sexMale     0.0089     0.1041    0.09              0.93187    
## year2021:gendercomp_text3 W=M:sexMale         0.1311     0.0958    1.37              0.17101    
## year2021:gendercomp_text4 Sl. W>M:sexMale     0.3071     0.1075    2.86              0.00429 ** 
## year2021:gendercomp_text5 Subs. W>M:sexMale   0.2738     0.1128    2.43              0.01524 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.0139, Adjusted R-squared:  0.0131 
## F-statistic: 18.3 on 19 and 24768 DF,  p-value: <0.0000000000000002

During your career, would you like to: Continue in your current job and role at the same level of responsibility.

## 
## Call:
## lm(formula = liketo_contjob ~ year * gendercomp_text * sex, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.959 -0.781  0.201  1.134  1.371 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   3.7273     0.0625   59.61 < 0.0000000000000002 ***
## year2021                                      0.0719     0.0658    1.09               0.2743    
## gendercomp_text2 Sl. M>W                     -0.0774     0.0835   -0.93               0.3542    
## gendercomp_text3 W=M                          0.2322     0.0767    3.03               0.0025 ** 
## gendercomp_text4 Sl. W>M                      0.1205     0.0781    1.54               0.1227    
## gendercomp_text5 Subs. W>M                    0.0197     0.0784    0.25               0.8021    
## sexMale                                       0.2006     0.0736    2.73               0.0064 ** 
## year2021:gendercomp_text2 Sl. M>W             0.1310     0.0899    1.46               0.1449    
## year2021:gendercomp_text3 W=M                -0.1652     0.0827   -2.00               0.0457 *  
## year2021:gendercomp_text4 Sl. W>M            -0.2203     0.0897   -2.45               0.0141 *  
## year2021:gendercomp_text5 Subs. W>M          -0.1422     0.0913   -1.56               0.1193    
## year2021:sexMale                             -0.3415     0.0833   -4.10             0.000042 ***
## gendercomp_text2 Sl. M>W:sexMale             -0.0263     0.0974   -0.27               0.7872    
## gendercomp_text3 W=M:sexMale                 -0.2158     0.0940   -2.29               0.0218 *  
## gendercomp_text4 Sl. W>M:sexMale             -0.1608     0.1026   -1.57               0.1171    
## gendercomp_text5 Subs. W>M:sexMale           -0.2868     0.1094   -2.62               0.0088 ** 
## year2021:gendercomp_text2 Sl. M>W:sexMale     0.0818     0.1170    0.70               0.4846    
## year2021:gendercomp_text3 W=M:sexMale         0.2714     0.1077    2.52               0.0117 *  
## year2021:gendercomp_text4 Sl. W>M:sexMale     0.3460     0.1208    2.86               0.0042 ** 
## year2021:gendercomp_text5 Subs. W>M:sexMale   0.3805     0.1268    3.00               0.0027 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.00565,    Adjusted R-squared:  0.00489 
## F-statistic: 7.41 on 19 and 24768 DF,  p-value: <0.0000000000000002

During your career, would you like to: Take on new challenges, assignments, or roles in your current job.

## 
## Call:
## lm(formula = liketo_newchall ~ year * gendercomp_text * sex, 
##     data = mps_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1571 -0.1571  0.0095  0.8971  1.5367 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   3.6604     0.0551   66.48 < 0.0000000000000002 ***
## year2021                                      0.3364     0.0579    5.81         0.0000000064 ***
## gendercomp_text2 Sl. M>W                     -0.1971     0.0735   -2.68               0.0074 ** 
## gendercomp_text3 W=M                          0.1749     0.0675    2.59               0.0096 ** 
## gendercomp_text4 Sl. W>M                      0.0605     0.0687    0.88               0.3790    
## gendercomp_text5 Subs. W>M                   -0.0132     0.0691   -0.19               0.8486    
## sexMale                                       0.1470     0.0648    2.27               0.0233 *  
## year2021:gendercomp_text2 Sl. M>W             0.2860     0.0791    3.61               0.0003 ***
## year2021:gendercomp_text3 W=M                -0.0607     0.0728   -0.83               0.4047    
## year2021:gendercomp_text4 Sl. W>M            -0.0668     0.0790   -0.85               0.3978    
## year2021:gendercomp_text5 Subs. W>M          -0.0798     0.0804   -0.99               0.3206    
## year2021:sexMale                             -0.0916     0.0734   -1.25               0.2120    
## gendercomp_text2 Sl. M>W:sexMale              0.0859     0.0857    1.00               0.3164    
## gendercomp_text3 W=M:sexMale                 -0.1333     0.0828   -1.61               0.1074    
## gendercomp_text4 Sl. W>M:sexMale             -0.1550     0.0904   -1.72               0.0863 .  
## gendercomp_text5 Subs. W>M:sexMale           -0.2574     0.0963   -2.67               0.0076 ** 
## year2021:gendercomp_text2 Sl. M>W:sexMale    -0.1203     0.1030   -1.17               0.2428    
## year2021:gendercomp_text3 W=M:sexMale         0.1239     0.0948    1.31               0.1912    
## year2021:gendercomp_text4 Sl. W>M:sexMale     0.2120     0.1064    1.99               0.0463 *  
## year2021:gendercomp_text5 Subs. W>M:sexMale   0.3456     0.1116    3.10               0.0020 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.026,  Adjusted R-squared:  0.0253 
## F-statistic: 34.9 on 19 and 24768 DF,  p-value: <0.0000000000000002

During your career, would you like to: Take on supervisory or managerial responsibilities.

## 
## Call:
## lm(formula = liketo_super ~ year * gendercomp_text * sex, data = mps_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9567 -0.9563  0.0437  1.0433  1.9491 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                  3.78877    0.06343   59.73 < 0.0000000000000002 ***
## year2021                                    -0.43901    0.06674   -6.58       0.000000000049 ***
## gendercomp_text2 Sl. M>W                    -0.07598    0.08472   -0.90               0.3698    
## gendercomp_text3 W=M                         0.13836    0.07781    1.78               0.0754 .  
## gendercomp_text4 Sl. W>M                     0.11869    0.07918    1.50               0.1339    
## gendercomp_text5 Subs. W>M                  -0.01730    0.07957   -0.22               0.8279    
## sexMale                                      0.16798    0.07465    2.25               0.0244 *  
## year2021:gendercomp_text2 Sl. M>W            0.13098    0.09116    1.44               0.1508    
## year2021:gendercomp_text3 W=M               -0.06816    0.08387   -0.81               0.4165    
## year2021:gendercomp_text4 Sl. W>M           -0.11296    0.09103   -1.24               0.2147    
## year2021:gendercomp_text5 Subs. W>M          0.00528    0.09258    0.06               0.9545    
## year2021:sexMale                            -0.26243    0.08452   -3.10               0.0019 ** 
## gendercomp_text2 Sl. M>W:sexMale            -0.04289    0.09875   -0.43               0.6641    
## gendercomp_text3 W=M:sexMale                -0.13880    0.09538   -1.46               0.1456    
## gendercomp_text4 Sl. W>M:sexMale            -0.16580    0.10412   -1.59               0.1113    
## gendercomp_text5 Subs. W>M:sexMale          -0.28753    0.11099   -2.59               0.0096 ** 
## year2021:gendercomp_text2 Sl. M>W:sexMale   -0.07452    0.11867   -0.63               0.5300    
## year2021:gendercomp_text3 W=M:sexMale        0.02108    0.10920    0.19               0.8469    
## year2021:gendercomp_text4 Sl. W>M:sexMale    0.06769    0.12257    0.55               0.5808    
## year2021:gendercomp_text5 Subs. W>M:sexMale  0.09517    0.12861    0.74               0.4593    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.0506, Adjusted R-squared:  0.0499 
## F-statistic: 69.5 on 19 and 24768 DF,  p-value: <0.0000000000000002

During your career, would you like to: Reduce work hours or responsibilities

## 
## Call:
## lm(formula = liketo_reduc ~ year * gendercomp_text * sex, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.977 -0.968 -0.038  0.921  3.050 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   3.7406     0.0533   70.21 < 0.0000000000000002 ***
## year2021                                     -1.6619     0.0561  -29.65 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                     -0.1054     0.0712   -1.48              0.13848    
## gendercomp_text3 W=M                          0.1770     0.0654    2.71              0.00675 ** 
## gendercomp_text4 Sl. W>M                      0.1370     0.0665    2.06              0.03944 *  
## gendercomp_text5 Subs. W>M                    0.0278     0.0668    0.42              0.67783    
## sexMale                                       0.2367     0.0627    3.78              0.00016 ***
## year2021:gendercomp_text2 Sl. M>W             0.0672     0.0766    0.88              0.38033    
## year2021:gendercomp_text3 W=M                -0.2130     0.0704   -3.02              0.00250 ** 
## year2021:gendercomp_text4 Sl. W>M            -0.1778     0.0765   -2.32              0.02008 *  
## year2021:gendercomp_text5 Subs. W>M           0.0161     0.0778    0.21              0.83638    
## year2021:sexMale                             -0.3140     0.0710   -4.42            0.0000098 ***
## gendercomp_text2 Sl. M>W:sexMale             -0.0524     0.0829   -0.63              0.52725    
## gendercomp_text3 W=M:sexMale                 -0.1862     0.0801   -2.32              0.02015 *  
## gendercomp_text4 Sl. W>M:sexMale             -0.2428     0.0874   -2.78              0.00549 ** 
## gendercomp_text5 Subs. W>M:sexMale           -0.3591     0.0932   -3.85              0.00012 ***
## year2021:gendercomp_text2 Sl. M>W:sexMale     0.1042     0.0997    1.05              0.29572    
## year2021:gendercomp_text3 W=M:sexMale         0.1902     0.0917    2.07              0.03815 *  
## year2021:gendercomp_text4 Sl. W>M:sexMale     0.3639     0.1029    3.53              0.00041 ***
## year2021:gendercomp_text5 Subs. W>M:sexMale   0.2639     0.1080    2.44              0.01455 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.393,  Adjusted R-squared:  0.392 
## F-statistic:  843 on 19 and 24768 DF,  p-value: <0.0000000000000002

In the past 2 years, an agency official (e.g., supervisor, manager, senior leader, etc.) in my work unit has discriminated in favor or against someone in a personnel action based upon…

## 
## Call:
## lm(formula = discsex ~ year * gendercomp_text * sex, data = mps_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8373 -0.1539 -0.0899  0.1718  1.9204 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   2.6845     0.0251  106.76 < 0.0000000000000002 ***
## year2021                                     -1.5619     0.0265  -59.03 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                     -0.1876     0.0336   -5.59         0.0000000234 ***
## gendercomp_text3 W=M                          0.1171     0.0308    3.80              0.00015 ***
## gendercomp_text4 Sl. W>M                      0.1051     0.0314    3.35              0.00082 ***
## gendercomp_text5 Subs. W>M                    0.1146     0.0315    3.63              0.00028 ***
## sexMale                                       0.1528     0.0296    5.16         0.0000002454 ***
## year2021:gendercomp_text2 Sl. M>W             0.1447     0.0361    4.00         0.0000625908 ***
## year2021:gendercomp_text3 W=M                -0.1498     0.0333   -4.51         0.0000066501 ***
## year2021:gendercomp_text4 Sl. W>M            -0.1127     0.0361   -3.12              0.00180 ** 
## year2021:gendercomp_text5 Subs. W>M           0.0104     0.0367    0.28              0.77675    
## year2021:sexMale                              0.0989     0.0335    2.95              0.00318 ** 
## gendercomp_text2 Sl. M>W:sexMale              0.1446     0.0392    3.69              0.00022 ***
## gendercomp_text3 W=M:sexMale                 -0.1262     0.0378   -3.34              0.00085 ***
## gendercomp_text4 Sl. W>M:sexMale             -0.1632     0.0413   -3.95         0.0000769238 ***
## gendercomp_text5 Subs. W>M:sexMale           -0.1967     0.0440   -4.47         0.0000078431 ***
## year2021:gendercomp_text2 Sl. M>W:sexMale    -0.2776     0.0470   -5.90         0.0000000037 ***
## year2021:gendercomp_text3 W=M:sexMale        -0.0620     0.0433   -1.43              0.15231    
## year2021:gendercomp_text4 Sl. W>M:sexMale    -0.0480     0.0486   -0.99              0.32350    
## year2021:gendercomp_text5 Subs. W>M:sexMale  -0.1486     0.0510   -2.92              0.00356 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.49 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:   0.7,   Adjusted R-squared:   0.7 
## F-statistic: 3.05e+03 on 19 and 24768 DF,  p-value: <0.0000000000000002

Gender Composition by year and participant gender

Note: all responses are RELATIVE to the response option “1 Subs. M>W”; this means that people indicated there were substantially more men than women.

My job makes good use of my skills and abilities

Regression

## 
## Call:
## lm(formula = useskills ~ gendercomp_text * sex * year, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.255 -0.228  0.020  0.815  1.220 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                  3.96791    0.05264   75.38 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                    -0.18804    0.07031   -2.67               0.0075 ** 
## gendercomp_text3 W=M                         0.03883    0.06457    0.60               0.5476    
## gendercomp_text4 Sl. W>M                    -0.00374    0.06571   -0.06               0.9547    
## gendercomp_text5 Subs. W>M                  -0.02773    0.06603   -0.42               0.6745    
## sexMale                                      0.02900    0.06195    0.47               0.6398    
## year2021                                     0.10971    0.05539    1.98               0.0476 *  
## gendercomp_text2 Sl. M>W:sexMale             0.05421    0.08196    0.66               0.5083    
## gendercomp_text3 W=M:sexMale                -0.04071    0.07916   -0.51               0.6071    
## gendercomp_text4 Sl. W>M:sexMale            -0.01326    0.08641   -0.15               0.8781    
## gendercomp_text5 Subs. W>M:sexMale          -0.18157    0.09211   -1.97               0.0487 *  
## gendercomp_text2 Sl. M>W:year2021            0.33817    0.07565    4.47            0.0000079 ***
## gendercomp_text3 W=M:year2021                0.10101    0.06961    1.45               0.1468    
## gendercomp_text4 Sl. W>M:year2021            0.01682    0.07555    0.22               0.8238    
## gendercomp_text5 Subs. W>M:year2021         -0.01144    0.07683   -0.15               0.8817    
## sexMale:year2021                            -0.14375    0.07014   -2.05               0.0404 *  
## gendercomp_text2 Sl. M>W:sexMale:year2021   -0.02358    0.09848   -0.24               0.8108    
## gendercomp_text3 W=M:sexMale:year2021        0.19315    0.09062    2.13               0.0331 *  
## gendercomp_text4 Sl. W>M:sexMale:year2021    0.22270    0.10172    2.19               0.0286 *  
## gendercomp_text5 Subs. W>M:sexMale:year2021  0.32221    0.10673    3.02               0.0025 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.0151, Adjusted R-squared:  0.0144 
## F-statistic:   20 on 19 and 24768 DF,  p-value: <0.0000000000000002

Estimated marginal means

Tukey HSD - comparing gender composition across p. gender and year

Tukey HSD - comparing year across p. gender and gender composition

Tukey HSD - comparing p. gender across year and gender composition

Graphs

I have the resources to do my job well.

Regression

## 
## Call:
## lm(formula = resourceswell ~ gendercomp_text * sex * year, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.976 -0.703  0.202  1.024  1.520 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   3.6283     0.0556   65.21 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                     -0.1483     0.0743   -1.99              0.04607 *  
## gendercomp_text3 W=M                          0.0748     0.0683    1.10              0.27339    
## gendercomp_text4 Sl. W>M                      0.0896     0.0695    1.29              0.19723    
## gendercomp_text5 Subs. W>M                    0.0726     0.0698    1.04              0.29845    
## sexMale                                       0.0637     0.0655    0.97              0.33050    
## year2021                                      0.1697     0.0585    2.90              0.00375 ** 
## gendercomp_text2 Sl. M>W:sexMale              0.0529     0.0866    0.61              0.54131    
## gendercomp_text3 W=M:sexMale                 -0.0459     0.0837   -0.55              0.58349    
## gendercomp_text4 Sl. W>M:sexMale             -0.1230     0.0913   -1.35              0.17808    
## gendercomp_text5 Subs. W>M:sexMale           -0.1039     0.0974   -1.07              0.28603    
## gendercomp_text2 Sl. M>W:year2021             0.2957     0.0800    3.70              0.00022 ***
## gendercomp_text3 W=M:year2021                 0.1031     0.0736    1.40              0.16131    
## gendercomp_text4 Sl. W>M:year2021            -0.0648     0.0799   -0.81              0.41687    
## gendercomp_text5 Subs. W>M:year2021          -0.1110     0.0812   -1.37              0.17165    
## sexMale:year2021                             -0.1572     0.0741   -2.12              0.03396 *  
## gendercomp_text2 Sl. M>W:sexMale:year2021     0.0089     0.1041    0.09              0.93187    
## gendercomp_text3 W=M:sexMale:year2021         0.1311     0.0958    1.37              0.17101    
## gendercomp_text4 Sl. W>M:sexMale:year2021     0.3071     0.1075    2.86              0.00429 ** 
## gendercomp_text5 Subs. W>M:sexMale:year2021   0.2738     0.1128    2.43              0.01524 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.0139, Adjusted R-squared:  0.0131 
## F-statistic: 18.3 on 19 and 24768 DF,  p-value: <0.0000000000000002

Estimated marginal means

Tukey HSD - comparing gender composition across p. gender and year

Tukey HSD - comparing year across p. gender and gender composition

Tukey HSD - comparing p. gender across year and gender composition

Graphs

During your career, would you like to: Continue in your current job and role at the same level of responsibility

Regression

## 
## Call:
## lm(formula = liketo_contjob ~ gendercomp_text * sex * year, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.959 -0.781  0.201  1.134  1.371 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   3.7273     0.0625   59.61 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                     -0.0774     0.0835   -0.93               0.3542    
## gendercomp_text3 W=M                          0.2322     0.0767    3.03               0.0025 ** 
## gendercomp_text4 Sl. W>M                      0.1205     0.0781    1.54               0.1227    
## gendercomp_text5 Subs. W>M                    0.0197     0.0784    0.25               0.8021    
## sexMale                                       0.2006     0.0736    2.73               0.0064 ** 
## year2021                                      0.0719     0.0658    1.09               0.2743    
## gendercomp_text2 Sl. M>W:sexMale             -0.0263     0.0974   -0.27               0.7872    
## gendercomp_text3 W=M:sexMale                 -0.2158     0.0940   -2.29               0.0218 *  
## gendercomp_text4 Sl. W>M:sexMale             -0.1608     0.1026   -1.57               0.1171    
## gendercomp_text5 Subs. W>M:sexMale           -0.2868     0.1094   -2.62               0.0088 ** 
## gendercomp_text2 Sl. M>W:year2021             0.1310     0.0899    1.46               0.1449    
## gendercomp_text3 W=M:year2021                -0.1652     0.0827   -2.00               0.0457 *  
## gendercomp_text4 Sl. W>M:year2021            -0.2203     0.0897   -2.45               0.0141 *  
## gendercomp_text5 Subs. W>M:year2021          -0.1422     0.0913   -1.56               0.1193    
## sexMale:year2021                             -0.3415     0.0833   -4.10             0.000042 ***
## gendercomp_text2 Sl. M>W:sexMale:year2021     0.0818     0.1170    0.70               0.4846    
## gendercomp_text3 W=M:sexMale:year2021         0.2714     0.1077    2.52               0.0117 *  
## gendercomp_text4 Sl. W>M:sexMale:year2021     0.3460     0.1208    2.86               0.0042 ** 
## gendercomp_text5 Subs. W>M:sexMale:year2021   0.3805     0.1268    3.00               0.0027 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.00565,    Adjusted R-squared:  0.00489 
## F-statistic: 7.41 on 19 and 24768 DF,  p-value: <0.0000000000000002

Estimated marginal means

Tukey HSD - comparing gender composition across p. gender and year

Tukey HSD - comparing year across p. gender and gender composition

Tukey HSD - comparing p. gender across year and gender composition

Graphs

During your career, would you like to: Take on new challenges, assignments, or roles in your current job

Regression

## 
## Call:
## lm(formula = liketo_newchall ~ gendercomp_text * sex, data = mps_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0583 -0.0583  0.0357  0.9959  1.2089 
## 
## Coefficients:
##                                    Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                         3.96429    0.01730  229.09 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W            0.00827    0.02721    0.30              0.76131    
## gendercomp_text3 W=M                0.08805    0.02515    3.50              0.00046 ***
## gendercomp_text4 Sl. W>M           -0.08543    0.03186   -2.68              0.00733 ** 
## gendercomp_text5 Subs. W>M         -0.17319    0.03285   -5.27           0.00000014 ***
## sexMale                            -0.01580    0.02837   -0.56              0.57751    
## gendercomp_text2 Sl. M>W:sexMale   -0.12411    0.04210   -2.95              0.00320 ** 
## gendercomp_text3 W=M:sexMale        0.02176    0.03881    0.56              0.57509    
## gendercomp_text4 Sl. W>M:sexMale    0.14101    0.04592    3.07              0.00214 ** 
## gendercomp_text5 Subs. W>M:sexMale  0.19083    0.04614    4.14           0.00003548 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 24778 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.00531,    Adjusted R-squared:  0.00494 
## F-statistic: 14.7 on 9 and 24778 DF,  p-value: <0.0000000000000002

Estimated marginal means

Tukey HSD - comparing gender composition across p. gender and year

Tukey HSD - comparing year across p. gender and gender composition

Tukey HSD - comparing p. gender across year and gender composition

Graphs

During your career, would you like to: Take on supervisory or managerial responsibilities.

Regression

## 
## Call:
## lm(formula = liketo_super ~ gendercomp_text * sex * year, data = mps_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9567 -0.9563  0.0437  1.0433  1.9491 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                  3.78877    0.06343   59.73 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                    -0.07598    0.08472   -0.90               0.3698    
## gendercomp_text3 W=M                         0.13836    0.07781    1.78               0.0754 .  
## gendercomp_text4 Sl. W>M                     0.11869    0.07918    1.50               0.1339    
## gendercomp_text5 Subs. W>M                  -0.01730    0.07957   -0.22               0.8279    
## sexMale                                      0.16798    0.07465    2.25               0.0244 *  
## year2021                                    -0.43901    0.06674   -6.58       0.000000000049 ***
## gendercomp_text2 Sl. M>W:sexMale            -0.04289    0.09875   -0.43               0.6641    
## gendercomp_text3 W=M:sexMale                -0.13880    0.09538   -1.46               0.1456    
## gendercomp_text4 Sl. W>M:sexMale            -0.16580    0.10412   -1.59               0.1113    
## gendercomp_text5 Subs. W>M:sexMale          -0.28753    0.11099   -2.59               0.0096 ** 
## gendercomp_text2 Sl. M>W:year2021            0.13098    0.09116    1.44               0.1508    
## gendercomp_text3 W=M:year2021               -0.06816    0.08387   -0.81               0.4165    
## gendercomp_text4 Sl. W>M:year2021           -0.11296    0.09103   -1.24               0.2147    
## gendercomp_text5 Subs. W>M:year2021          0.00528    0.09258    0.06               0.9545    
## sexMale:year2021                            -0.26243    0.08452   -3.10               0.0019 ** 
## gendercomp_text2 Sl. M>W:sexMale:year2021   -0.07452    0.11867   -0.63               0.5300    
## gendercomp_text3 W=M:sexMale:year2021        0.02108    0.10920    0.19               0.8469    
## gendercomp_text4 Sl. W>M:sexMale:year2021    0.06769    0.12257    0.55               0.5808    
## gendercomp_text5 Subs. W>M:sexMale:year2021  0.09517    0.12861    0.74               0.4593    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.0506, Adjusted R-squared:  0.0499 
## F-statistic: 69.5 on 19 and 24768 DF,  p-value: <0.0000000000000002

Estimated marginal means

Tukey HSD - comparing gender composition across p. gender and year

Tukey HSD - comparing year across p. gender and gender composition

Tukey HSD - comparing p. gender across year and gender composition

Graphs

During your career, would you like to: Reduce work hours or responsibilities

Regression

## 
## Call:
## lm(formula = liketo_reduc ~ gendercomp_text * sex * year, data = mps_full)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.977 -0.968 -0.038  0.921  3.050 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   3.7406     0.0533   70.21 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                     -0.1054     0.0712   -1.48              0.13848    
## gendercomp_text3 W=M                          0.1770     0.0654    2.71              0.00675 ** 
## gendercomp_text4 Sl. W>M                      0.1370     0.0665    2.06              0.03944 *  
## gendercomp_text5 Subs. W>M                    0.0278     0.0668    0.42              0.67783    
## sexMale                                       0.2367     0.0627    3.78              0.00016 ***
## year2021                                     -1.6619     0.0561  -29.65 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W:sexMale             -0.0524     0.0829   -0.63              0.52725    
## gendercomp_text3 W=M:sexMale                 -0.1862     0.0801   -2.32              0.02015 *  
## gendercomp_text4 Sl. W>M:sexMale             -0.2428     0.0874   -2.78              0.00549 ** 
## gendercomp_text5 Subs. W>M:sexMale           -0.3591     0.0932   -3.85              0.00012 ***
## gendercomp_text2 Sl. M>W:year2021             0.0672     0.0766    0.88              0.38033    
## gendercomp_text3 W=M:year2021                -0.2130     0.0704   -3.02              0.00250 ** 
## gendercomp_text4 Sl. W>M:year2021            -0.1778     0.0765   -2.32              0.02008 *  
## gendercomp_text5 Subs. W>M:year2021           0.0161     0.0778    0.21              0.83638    
## sexMale:year2021                             -0.3140     0.0710   -4.42            0.0000098 ***
## gendercomp_text2 Sl. M>W:sexMale:year2021     0.1042     0.0997    1.05              0.29572    
## gendercomp_text3 W=M:sexMale:year2021         0.1902     0.0917    2.07              0.03815 *  
## gendercomp_text4 Sl. W>M:sexMale:year2021     0.3639     0.1029    3.53              0.00041 ***
## gendercomp_text5 Subs. W>M:sexMale:year2021   0.2639     0.1080    2.44              0.01455 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:  0.393,  Adjusted R-squared:  0.392 
## F-statistic:  843 on 19 and 24768 DF,  p-value: <0.0000000000000002

Estimated marginal means

Tukey HSD - comparing gender composition across p. gender and year

Tukey HSD - comparing year across p. gender and gender composition

Tukey HSD - comparing p. gender across year and gender composition

Graphs

In the past 2 years, an agency official (e.g., supervisor, manager, senior leader, etc.) in my work unit has discriminated in favor or against someone in a personnel action based upon…

Regression

## 
## Call:
## lm(formula = discsex ~ gendercomp_text * sex * year, data = mps_full)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8373 -0.1539 -0.0899  0.1718  1.9204 
## 
## Coefficients:
##                                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                   2.6845     0.0251  106.76 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W                     -0.1876     0.0336   -5.59         0.0000000234 ***
## gendercomp_text3 W=M                          0.1171     0.0308    3.80              0.00015 ***
## gendercomp_text4 Sl. W>M                      0.1051     0.0314    3.35              0.00082 ***
## gendercomp_text5 Subs. W>M                    0.1146     0.0315    3.63              0.00028 ***
## sexMale                                       0.1528     0.0296    5.16         0.0000002454 ***
## year2021                                     -1.5619     0.0265  -59.03 < 0.0000000000000002 ***
## gendercomp_text2 Sl. M>W:sexMale              0.1446     0.0392    3.69              0.00022 ***
## gendercomp_text3 W=M:sexMale                 -0.1262     0.0378   -3.34              0.00085 ***
## gendercomp_text4 Sl. W>M:sexMale             -0.1632     0.0413   -3.95         0.0000769238 ***
## gendercomp_text5 Subs. W>M:sexMale           -0.1967     0.0440   -4.47         0.0000078431 ***
## gendercomp_text2 Sl. M>W:year2021             0.1447     0.0361    4.00         0.0000625908 ***
## gendercomp_text3 W=M:year2021                -0.1498     0.0333   -4.51         0.0000066501 ***
## gendercomp_text4 Sl. W>M:year2021            -0.1127     0.0361   -3.12              0.00180 ** 
## gendercomp_text5 Subs. W>M:year2021           0.0104     0.0367    0.28              0.77675    
## sexMale:year2021                              0.0989     0.0335    2.95              0.00318 ** 
## gendercomp_text2 Sl. M>W:sexMale:year2021    -0.2776     0.0470   -5.90         0.0000000037 ***
## gendercomp_text3 W=M:sexMale:year2021        -0.0620     0.0433   -1.43              0.15231    
## gendercomp_text4 Sl. W>M:sexMale:year2021    -0.0480     0.0486   -0.99              0.32350    
## gendercomp_text5 Subs. W>M:sexMale:year2021  -0.1486     0.0510   -2.92              0.00356 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.49 on 24768 degrees of freedom
##   (1028 observations deleted due to missingness)
## Multiple R-squared:   0.7,   Adjusted R-squared:   0.7 
## F-statistic: 3.05e+03 on 19 and 24768 DF,  p-value: <0.0000000000000002

Estimated marginal means

Tukey HSD - comparing gender composition across p. gender and year

Tukey HSD - comparing year across p. gender and gender composition

Tukey HSD - comparing p. gender across year and gender composition

Graphs