Import your data
data <- read_csv("../00_data/MKmyData1.csv")
## Rows: 101 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (8): id.on.tag, animal.name, scientific.name, tag.deployment.start, tag....
## dbl (5): Column1, prey.per.month, hours.indoor.per.day, cats.in.house, age
## lgl (4): hunt, dry.food, wet.food, other.food
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data
## # A tibble: 101 × 17
## Column1 id.on.tag animal.name scientific.name tag.deployment.start
## <dbl> <chr> <chr> <chr> <chr>
## 1 1 Tommy-Tag Tommy Felis catus 6/3/17 1:02
## 2 2 Athena Athena Felis catus 6/24/17 1:02
## 3 3 Ares Ares Felis catus 6/24/17 1:03
## 4 4 Lola Lola Felis catus 6/24/17 1:18
## 5 5 Maverick Maverick Felis catus 6/25/17 1:04
## 6 6 Coco Coco Felis catus 6/28/17 1:02
## 7 7 Charlie Charlie Felis catus 6/28/17 1:03
## 8 8 Jago Jago Felis catus 6/28/17 4:10
## 9 9 Morpheus-Tag Morpheus Felis catus 7/1/17 1:02
## 10 10 Nettle-Tag Nettle Felis catus 7/1/17 1:05
## # ℹ 91 more rows
## # ℹ 12 more variables: tag.deployment.end <chr>, hunt <lgl>,
## # prey.per.month <dbl>, reproductive.condition <chr>, sex <chr>,
## # hours.indoor.per.day <dbl>, cats.in.house <dbl>, dry.food <lgl>,
## # wet.food <lgl>, other.food <lgl>, study.location <chr>, age <dbl>
MKmyData1_small <- data %>%
select(animal.name, prey.per.month, hours.indoor.per.day) %>%
filter(animal.name %in% c("Tommy", "Athena", "Ares", "Lola", "Maverick", "Coco", "Charlie", "Jago", "Morpheus", "Nettle"))
Pivoting
MKmyData1_small %>%
pivot_wider(names_from = prey.per.month, values_from = hours.indoor.per.day)
## # A tibble: 10 × 6
## animal.name `12.5` `3` `0` `17.5` `7.5`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Tommy 12.5 NA NA NA NA
## 2 Athena NA 7.5 NA NA NA
## 3 Ares NA NA 7.5 NA NA
## 4 Lola NA 17.5 NA NA NA
## 5 Maverick NA 12.5 NA NA NA
## 6 Coco NA 12.5 NA NA NA
## 7 Charlie NA 12.5 NA NA NA
## 8 Jago NA NA NA 7.5 NA
## 9 Morpheus NA 2.5 NA NA NA
## 10 Nettle NA NA NA NA 12.5
MKmyData1_small_unique <- MKmyData1_small %>% slice(-10)
MKmyData1_small_unique %>%
pivot_wider(names_from = prey.per.month, values_from = hours.indoor.per.day)
## # A tibble: 9 × 5
## animal.name `12.5` `3` `0` `17.5`
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Tommy 12.5 NA NA NA
## 2 Athena NA 7.5 NA NA
## 3 Ares NA NA 7.5 NA
## 4 Lola NA 17.5 NA NA
## 5 Maverick NA 12.5 NA NA
## 6 Coco NA 12.5 NA NA
## 7 Charlie NA 12.5 NA NA
## 8 Jago NA NA NA 7.5
## 9 Morpheus NA 2.5 NA NA
Separating and Uniting
Unite two columns
MKmyData_united <- data %>%
unite(col = "newName", hours.indoor.per.day:cats.in.house, sep = "/", remove = TRUE)
Seperate a column
MKmyData_united %>%
separate(col = newName, into = c("hours.indoor.per.day", "cats.in.house"), sep = "/")
## # A tibble: 101 × 17
## Column1 id.on.tag animal.name scientific.name tag.deployment.start
## <dbl> <chr> <chr> <chr> <chr>
## 1 1 Tommy-Tag Tommy Felis catus 6/3/17 1:02
## 2 2 Athena Athena Felis catus 6/24/17 1:02
## 3 3 Ares Ares Felis catus 6/24/17 1:03
## 4 4 Lola Lola Felis catus 6/24/17 1:18
## 5 5 Maverick Maverick Felis catus 6/25/17 1:04
## 6 6 Coco Coco Felis catus 6/28/17 1:02
## 7 7 Charlie Charlie Felis catus 6/28/17 1:03
## 8 8 Jago Jago Felis catus 6/28/17 4:10
## 9 9 Morpheus-Tag Morpheus Felis catus 7/1/17 1:02
## 10 10 Nettle-Tag Nettle Felis catus 7/1/17 1:05
## # ℹ 91 more rows
## # ℹ 12 more variables: tag.deployment.end <chr>, hunt <lgl>,
## # prey.per.month <dbl>, reproductive.condition <chr>, sex <chr>,
## # hours.indoor.per.day <chr>, cats.in.house <chr>, dry.food <lgl>,
## # wet.food <lgl>, other.food <lgl>, study.location <chr>, age <dbl>
Missing Values