WDI Paketi ve Veri Yükleme
- GSYH: “NY.GDP.MKTP.CD”
- Nüfus: “SP.POP.TOTL”
- Kadın işsizlik oranı: “SL.UEM.TOTL.FE.ZS”
- Erkek işsizlik oranı: “SL.UEM.TOTL.MA.ZS”
db <- WDI(country = "all", indicator = c("gsyh" = "NY.GDP.MKTP.CD", "nüfus" ="SP.POP.TOTL", "kadın" = "SL.UEM.TOTL.FE.ZS", "erkek" = "SL.UEM.TOTL.MA.ZS"), start = 2005, end = 2020)## # A tibble: 8 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 266 NA NA NA
## 2 iso2c chr 0 0 266 NA NA NA
## 3 iso3c chr 0 0 262 NA NA NA
## 4 year int 0 0 16 2005 2.01e 3 2.02e 3
## 5 gsyh dbl 139 3.3 4087 22909980. 2.27e12 8.78e13
## 6 nüfus dbl 16 0.4 4207 9912 2.91e 8 7.82e 9
## 7 kadın dbl 496 11.7 3472 0.15 9.04e 0 4.25e 1
## 8 erkek dbl 496 11.7 3425 0.04 7.18e 0 3.68e 1
## Joining with `by = join_by(country, iso2c, iso3c)`
## # A tibble: 14 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 215 NA NA NA
## 2 iso2c chr 0 0 215 NA NA NA
## 3 iso3c chr 0 0 215 NA NA NA
## 4 year int 0 0 16 2005 2.01e 3 2.02e 3
## 5 gsyh dbl 123 3.6 3318 22909980. 3.42e11 2.14e13
## 6 nüfus dbl 0 0 3438 9912 3.29e 7 1.41e 9
## 7 kadın dbl 480 14 2720 0.15 9.42e 0 4.25e 1
## 8 erkek dbl 480 14 2675 0.04 7.46e 0 3.68e 1
## 9 region chr 0 0 7 NA NA NA
## 10 capital chr 0 0 210 NA NA NA
## 11 longitude chr 0 0 210 NA NA NA
## 12 latitude chr 0 0 210 NA NA NA
## 13 income chr 0 0 5 NA NA NA
## 14 lending chr 0 0 4 NA NA NA
## Joining with `by = join_by(country)`
## # A tibble: 15 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 185 NA NA NA
## 2 iso2c chr 0 0 185 NA NA NA
## 3 iso3c chr 0 0 185 NA NA NA
## 4 year int 0 0 16 2005 2.01e 3 2.02e 3
## 5 gsyh dbl 57 1.9 2904 136450662. 3.90e11 2.14e13
## 6 nüfus dbl 0 0 2960 104632 3.82e 7 1.41e 9
## 7 kadın dbl 0 0 2719 0.15 9.42e 0 4.25e 1
## 8 erkek dbl 0 0 2674 0.04 7.46e 0 3.68e 1
## 9 region chr 0 0 7 NA NA NA
## 10 capital chr 0 0 181 NA NA NA
## 11 longitude chr 0 0 184 NA NA NA
## 12 latitude chr 0 0 184 NA NA NA
## 13 income chr 0 0 5 NA NA NA
## 14 lending chr 0 0 4 NA NA NA
## 15 sayi int 0 0 1 0 0 0
## Joining with `by = join_by(country)`
## # A tibble: 16 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 178 NA NA NA
## 2 iso2c chr 0 0 178 NA NA NA
## 3 iso3c chr 0 0 178 NA NA NA
## 4 year int 0 0 16 2005 2.01e 3 2.02e 3
## 5 gsyh dbl 0 0 2848 136450662. 3.96e11 2.14e13
## 6 nüfus dbl 0 0 2848 104632 3.91e 7 1.41e 9
## 7 kadın dbl 0 0 2622 0.15 9.31e 0 4.25e 1
## 8 erkek dbl 0 0 2582 0.04 7.4 e 0 3.68e 1
## 9 region chr 0 0 7 NA NA NA
## 10 capital chr 0 0 175 NA NA NA
## 11 longitude chr 0 0 178 NA NA NA
## 12 latitude chr 0 0 178 NA NA NA
## 13 income chr 0 0 4 NA NA NA
## 14 lending chr 0 0 4 NA NA NA
## 15 sayi int 0 0 1 0 0 0
## 16 sayi2 int 0 0 1 0 0 0
Ülke Analizi
Australia, China, Russian Federation
Australia
China
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Russian Federation
2020 yılı analizi
ggplot(db_2020,aes(nüfus)) + geom_histogram(binwidth = 39000000, colour = "purple", fill= "gray") + theme_classic() ##
dünya analizi
## # A tibble: 16 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 178 NA NA NA
## 2 iso2c chr 0 0 178 NA NA NA
## 3 iso3c chr 0 0 178 NA NA NA
## 4 year int 0 0 16 2005 2.01e 3 2.02e 3
## 5 gsyh dbl 0 0 2848 136450662. 3.96e11 2.14e13
## 6 nüfus dbl 0 0 2848 104632 3.91e 7 1.41e 9
## 7 kadın dbl 0 0 2622 0.15 9.31e 0 4.25e 1
## 8 erkek dbl 0 0 2582 0.04 7.4 e 0 3.68e 1
## 9 region chr 0 0 7 NA NA NA
## 10 capital chr 0 0 175 NA NA NA
## 11 longitude chr 0 0 178 NA NA NA
## 12 latitude chr 0 0 178 NA NA NA
## 13 income chr 0 0 4 NA NA NA
## 14 lending chr 0 0 4 NA NA NA
## 15 sayi int 0 0 1 0 0 0
## 16 sayi2 int 0 0 1 0 0 0
dunya <- db %>% group_by(year) %>%
summarise(dunya_gsyh = sum(gsyh),
dunya_nufusu = sum(nüfus),
dunya_kisi_uretim = dunya_gsyh/dunya_nufusu)db<- db%>% mutate(
ulke_oranı = gsyh/dunya_gsyh * 100,
nufus_oranı = nüfus/dunya_nufusu * 100,
verim = ulke_oranı/nufus_oranı
)ggplot(db_FR, aes(x = year, y = verim)) + geom_line() + labs(
title = "verim in France after 2005",
x = "year",
y = "verim"
)ggplot(db_SA, aes(x = year, y = verim)) +
geom_line() +
labs(title = " verim in Saudi Arabia after 2005",
x = "year",
y = "verim")db%>% filter(country %in% c("Luxembourg","Singapore")) %>%
ggplot(aes(x = year,
y = gsyh,
col = country)) + geom_line()