Import your data

read_csv("myData2.csv")
## Rows: 83 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): DAMAGE_COSTS, Damage_Cost_Per_Acre, Rate
## dbl (4): YEAR, NUMBER_FIRES, ACRES_BURNED, Average_Acres_Burned_Per_Fire
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 83 × 7
##     YEAR NUMBER_FIRES ACRES_BURNED DAMAGE_COSTS Damage_Cost_Per_Acre
##    <dbl>        <dbl>        <dbl> <chr>        <chr>               
##  1  1933         1994       129210 $318,636     $2.47               
##  2  1934         2338       363052 $563,710     $1.55               
##  3  1935         1447       127262 $165,543     $1.30               
##  4  1936         3805       756696 $1,877,147   $2.48               
##  5  1937         2907        71312 $151,584     $2.13               
##  6  1938         4150       221061 $404,225     $1.83               
##  7  1939         2491       513620 $847,579     $1.65               
##  8  1940         4497       156015 $272,178     $1.74               
##  9  1941         5460       278599 $515,737     $1.85               
## 10  1942         5236       573597 $1,484,864   $2.59               
## # ℹ 73 more rows
## # ℹ 2 more variables: Average_Acres_Burned_Per_Fire <dbl>, Rate <chr>
read_csv("myData2.csv", skip = 1)
## Rows: 82 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): $318,636, $2.47, 318636/129210
## dbl (4): 1933, 1994, 129210, 64.8
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 82 × 7
##    `1933` `1994` `129210` `$318,636` `$2.47` `64.8` `318636/129210`
##     <dbl>  <dbl>    <dbl> <chr>      <chr>    <dbl> <chr>          
##  1   1934   2338   363052 $563,710   $1.55    155.  563710/363052  
##  2   1935   1447   127262 $165,543   $1.30     88.0 165543/127262  
##  3   1936   3805   756696 $1,877,147 $2.48    199.  1877147/756696 
##  4   1937   2907    71312 $151,584   $2.13     24.5 151584/71312   
##  5   1938   4150   221061 $404,225   $1.83     53.3 404225/221061  
##  6   1939   2491   513620 $847,579   $1.65    206.  847579/513620  
##  7   1940   4497   156015 $272,178   $1.74     34.7 272178/156015  
##  8   1941   5460   278599 $515,737   $1.85     51.0 515737/278599  
##  9   1942   5236   573597 $1,484,864 $2.59    110.  1484864/573597 
## 10   1943   2163   553328 $1,502,027 $2.71    256.  1502027/553328 
## # ℹ 72 more rows
read_csv("myData2.csv", skip = 1, col_names = FALSE)
## Rows: 83 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): X4, X5, X7
## dbl (4): X1, X2, X3, X6
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 83 × 7
##       X1    X2     X3 X4         X5       X6 X7            
##    <dbl> <dbl>  <dbl> <chr>      <chr> <dbl> <chr>         
##  1  1933  1994 129210 $318,636   $2.47  64.8 318636/129210 
##  2  1934  2338 363052 $563,710   $1.55 155.  563710/363052 
##  3  1935  1447 127262 $165,543   $1.30  88.0 165543/127262 
##  4  1936  3805 756696 $1,877,147 $2.48 199.  1877147/756696
##  5  1937  2907  71312 $151,584   $2.13  24.5 151584/71312  
##  6  1938  4150 221061 $404,225   $1.83  53.3 404225/221061 
##  7  1939  2491 513620 $847,579   $1.65 206.  847579/513620 
##  8  1940  4497 156015 $272,178   $1.74  34.7 272178/156015 
##  9  1941  5460 278599 $515,737   $1.85  51.0 515737/278599 
## 10  1942  5236 573597 $1,484,864 $2.59 110.  1484864/573597
## # ℹ 73 more rows
fires <- read_csv("myData2.csv")
## Rows: 83 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): DAMAGE_COSTS, Damage_Cost_Per_Acre, Rate
## dbl (4): YEAR, NUMBER_FIRES, ACRES_BURNED, Average_Acres_Burned_Per_Fire
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Pivoting

long to wide form

Tried but data does not work out to do this.

wide to long form

My data does not fit this either. If I were to sort out my data by severity then I would be able to apply it, however, this would require a lot of data manipulation.

Separating and Uniting

fires %>%
    separate(Rate, into = c("Damage","Acres"), sep = "/")
## # A tibble: 83 × 8
##     YEAR NUMBER_FIRES ACRES_BURNED DAMAGE_COSTS Damage_Cost_Per_Acre
##    <dbl>        <dbl>        <dbl> <chr>        <chr>               
##  1  1933         1994       129210 $318,636     $2.47               
##  2  1934         2338       363052 $563,710     $1.55               
##  3  1935         1447       127262 $165,543     $1.30               
##  4  1936         3805       756696 $1,877,147   $2.48               
##  5  1937         2907        71312 $151,584     $2.13               
##  6  1938         4150       221061 $404,225     $1.83               
##  7  1939         2491       513620 $847,579     $1.65               
##  8  1940         4497       156015 $272,178     $1.74               
##  9  1941         5460       278599 $515,737     $1.85               
## 10  1942         5236       573597 $1,484,864   $2.59               
## # ℹ 73 more rows
## # ℹ 3 more variables: Average_Acres_Burned_Per_Fire <dbl>, Damage <chr>,
## #   Acres <chr>
fires %>%
    unite(rate2, ACRES_BURNED, NUMBER_FIRES, sep = "/")
## # A tibble: 83 × 6
##     YEAR rate2    DAMAGE_COSTS Damage_Cost_Per_Acre Average_Acres_Burned…¹ Rate 
##    <dbl> <chr>    <chr>        <chr>                                 <dbl> <chr>
##  1  1933 129210/… $318,636     $2.47                                  64.8 3186…
##  2  1934 363052/… $563,710     $1.55                                 155.  5637…
##  3  1935 127262/… $165,543     $1.30                                  88.0 1655…
##  4  1936 756696/… $1,877,147   $2.48                                 199.  1877…
##  5  1937 71312/2… $151,584     $2.13                                  24.5 1515…
##  6  1938 221061/… $404,225     $1.83                                  53.3 4042…
##  7  1939 513620/… $847,579     $1.65                                 206.  8475…
##  8  1940 156015/… $272,178     $1.74                                  34.7 2721…
##  9  1941 278599/… $515,737     $1.85                                  51.0 5157…
## 10  1942 573597/… $1,484,864   $2.59                                 110.  1484…
## # ℹ 73 more rows
## # ℹ abbreviated name: ¹​Average_Acres_Burned_Per_Fire

Missing Values

No missing values in my data