data <- read_csv("../00_data/myData.csv")
## Rows: 20755 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Entity, Code
## dbl (2): Year, LifeExpectancy
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data_small <- data %>%
select(Year, LifeExpectancy, Entity) %>%
filter(Year %in% c ("1999"))
data %>%
pivot_wider(names_from = Year, values_from = LifeExpectancy)
## # A tibble: 261 × 315
## Entity Code `1950` `1951` `1952` `1953` `1954` `1955` `1956` `1957` `1958`
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Afghani… AFG 27.7 28.0 28.4 28.9 29.2 29.9 30.4 30.9 31.5
## 2 Africa <NA> 37.6 37.9 38.4 38.9 39.3 39.8 40.2 40.0 40.3
## 3 Albania ALB 44.7 45.1 46.0 46.5 47.6 48.5 49.6 50.7 52.0
## 4 Algeria DZA 42.4 42.5 42.9 42.9 40.2 40.4 40.3 40.4 40.4
## 5 America… ASM 61.0 61.4 61.6 61.3 62.1 62.3 62.6 62.9 63.3
## 6 Americas <NA> 58.1 58.4 58.8 59.2 60.0 60.2 60.6 60.7 61.2
## 7 Andorra AND 64.6 64.2 67.4 68.2 69.5 69.3 69.3 69.1 71.4
## 8 Angola AGO 36.3 36.4 36.5 36.7 36.9 37.1 37.3 37.5 37.7
## 9 Anguilla AIA 55.3 55.5 56.0 56.5 57.0 57.6 58.1 58.7 59.2
## 10 Antigua… ATG 57.1 57.5 57.9 58.3 58.7 59.1 59.5 59.9 60.4
## # ℹ 251 more rows
## # ℹ 304 more variables: `1959` <dbl>, `1960` <dbl>, `1961` <dbl>, `1962` <dbl>,
## # `1963` <dbl>, `1964` <dbl>, `1965` <dbl>, `1966` <dbl>, `1967` <dbl>,
## # `1968` <dbl>, `1969` <dbl>, `1970` <dbl>, `1971` <dbl>, `1972` <dbl>,
## # `1973` <dbl>, `1974` <dbl>, `1975` <dbl>, `1976` <dbl>, `1977` <dbl>,
## # `1978` <dbl>, `1979` <dbl>, `1980` <dbl>, `1981` <dbl>, `1982` <dbl>,
## # `1983` <dbl>, `1984` <dbl>, `1985` <dbl>, `1986` <dbl>, `1987` <dbl>, …