Ans. (a) the sum is greater than 84.
## EV = Expected value
## VX = Variance
## SD = Standard Deviation
EVX <- (1 * (1/6) + 2 * (1/6) + 3 * (1/6) + 4 * (1/6) + 5 * (1/6) + 6 * (1/6))
EVX
## [1] 3.5
VX <- 1/6 * ((1 - EVX)^2 + (2 - EVX)^2 + (3 - EVX)^2 + (4 - EVX)^2 + (5 - EVX)^2 + (6 - EVX)^2)
VX
## [1] 2.916667
EV24 = 24 * EVX
EV24
## [1] 84
V24 = 24 * VX
V24
## [1] 70
SD24 <- sqrt(V24)
SD24
## [1] 8.3666
P <- (84.5 - EV24)/SD24
P
## [1] 0.05976143
PS24 <- round(1 - pnorm(P),4)
PS24
## [1] 0.4762
The probability that the sum is greater than 84 is 0.4762
## Sum not equal to 84 is equal to higher than 84 or lower than 84
Phigher <- (84.5)
Plower <- (83.5)
PEQ_84 <- round(pnorm(84.5, mean = 84, SD24)- pnorm(83.5, mean = 84, SD24),4)
PEQ_84
## [1] 0.0477
The probability that the sum is equal to 84 is 0.0477