Prueba significacion para extension severa sin bordes incisales

Aca se analiza si los valores promedios de conteo de n

Como se trata de variables de conteo la forma d ever si las diferencias de superficies erosionadas promedio por variables independientes son significativas, no es adecuado hacer prueba t ajustadas por diseño muestral, ya que existe mucha asimetría. Para eso se propone hacer modelos de regresion POisson usando como variables explicativas las usadas para evaluar promedios y la variable de respuesta, logaritmo de la cantidad media de erosiones

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
options(OutDec = ",")
library(car)
## Loading required package: MASS
## Loading required package: nnet
load("~/Dropbox/odontologia/maestria licet/diciembre2013/datos_licet_23122013.RData")

Severas.poi6 <- svyglm(Severas ~ Sexo.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion


regTermTest(Severas.poi6, ~Sexo.rec)
## Wald test for Sexo.rec
##  in svyglm(formula = Severas ~ Sexo.rec, diseniopost1.sub, family = quasipoisson())
## F =  2,633  on  1  and  18  df: p= 0,12

Severas.poi7 <- svyglm(Severas ~ Nivel.Socieconomico.rec, diseniopost1.sub, 
    family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion

regTermTest(Severas.poi7, ~Nivel.Socieconomico.rec)
## Wald test for Nivel.Socieconomico.rec
##  in svyglm(formula = Severas ~ Nivel.Socieconomico.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  1,688  on  2  and  16  df: p= 0,22
summary(Severas.poi7)
## 
## Call:
## svyglm(formula = Severas ~ Nivel.Socieconomico.rec, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                      0,4969     0,1319    3,77   0,0017 **
## Nivel.Socieconomico.rec2-MEDIO   0,0436     0,1955    0,22   0,8262   
## Nivel.Socieconomico.rec3-ALTO    0,3038     0,1790    1,70   0,1089   
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,5582)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi8 <- svyglm(Severas ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1.sub, 
    family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi8, ~Nivel.Educativo.de.la.Madre1.rec)
## Wald test for Nivel.Educativo.de.la.Madre1.rec
##  in svyglm(formula = Severas ~ Nivel.Educativo.de.la.Madre1.rec, 
##     diseniopost1.sub, family = quasipoisson())
## F =  0,4399  on  3  and  15  df: p= 0,73
summary(Severas.poi8)
## 
## Call:
## svyglm(formula = Severas ~ Nivel.Educativo.de.la.Madre1.rec, 
##     diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                                0,7122     0,1894    3,76
## Nivel.Educativo.de.la.Madre1.rec2-Basic   -0,1481     0,1711   -0,87
## Nivel.Educativo.de.la.Madre1.rec3-Medium  -0,1729     0,4170   -0,41
## Nivel.Educativo.de.la.Madre1.rec4-High     0,0894     0,2736    0,33
##                                          Pr(>|t|)   
## (Intercept)                                0,0019 **
## Nivel.Educativo.de.la.Madre1.rec2-Basic    0,4003   
## Nivel.Educativo.de.la.Madre1.rec3-Medium   0,6843   
## Nivel.Educativo.de.la.Madre1.rec4-High     0,7484   
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,6379)
## 
## Number of Fisher Scoring iterations: 5

Severas.poi8a <- svyglm(Severas ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1.sub, 
    family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi8a, ~Nive.Educativo.de.la.Madre2.rec)
## Wald test for Nive.Educativo.de.la.Madre2.rec
##  in svyglm(formula = Severas ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  0,03581  on  2  and  16  df: p= 0,96
summary(Severas.poi8a)
## 
## Call:
## svyglm(formula = Severas ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                          0,62117    0,15149
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL         0,03502    0,15724
## Nive.Educativo.de.la.Madre2.rec3-COLLEGE-UNIVERSITY -0,00569    0,23847
##                                                     t value Pr(>|t|)    
## (Intercept)                                            4,10  0,00084 ***
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           0,22  0,82656    
## Nive.Educativo.de.la.Madre2.rec3-COLLEGE-UNIVERSITY   -0,02  0,98125    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,6372)
## 
## Number of Fisher Scoring iterations: 5

Severas.poi9 <- svyglm(Severas ~ Tipo.de.Escuela.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi9, ~Tipo.de.Escuela.rec)
## Wald test for Tipo.de.Escuela.rec
##  in svyglm(formula = Severas ~ Tipo.de.Escuela.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  4,024  on  1  and  18  df: p= 0,06
summary(Severas.poi9)
## 
## Call:
## svyglm(formula = Severas ~ Tipo.de.Escuela.rec, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     0,976      0,135    7,24  9,9e-07 ***
## Tipo.de.Escuela.rec2-Private   -0,412      0,205   -2,01     0,06 .  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,605)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi10 <- svyglm(Severas ~ FrCepDenti.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi10, ~FrCepDenti.rec)
## Wald test for FrCepDenti.rec
##  in svyglm(formula = Severas ~ FrCepDenti.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  3,696  on  2  and  17  df: p= 0,046
summary(Severas.poi10)
## 
## Call:
## svyglm(formula = Severas ~ FrCepDenti.rec, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             0,611      0,229    2,66    0,016
## FrCepDenti.rec2- 2 veces al dia         0,371      0,251    1,48    0,158
## FrCepDenti.rec3-3 o mas veces al dia   -0,234      0,276   -0,85    0,409
##                                       
## (Intercept)                          *
## FrCepDenti.rec2- 2 veces al dia       
## FrCepDenti.rec3-3 o mas veces al dia  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,4933)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi11 <- svyglm(Severas ~ UsoDentifrico3.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi11, ~UsoDentifrico3.rec)
## Wald test for UsoDentifrico3.rec
##  in svyglm(formula = Severas ~ UsoDentifrico3.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  2,802  on  1  and  18  df: p= 0,11
summary(Severas.poi11)
## 
## Call:
## svyglm(formula = Severas ~ UsoDentifrico3.rec, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0,616      0,135    4,57  0,00024 ***
## UsoDentifrico3.rec2-No    0,504      0,301    1,67  0,11144    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,6305)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi12 <- svyglm(Severas ~ Consitencia_Cepillo.rec, diseniopost1.sub, 
    family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion

regTermTest(Severas.poi12, ~Consitencia_Cepillo.rec)
## Wald test for Consitencia_Cepillo.rec
##  in svyglm(formula = Severas ~ Consitencia_Cepillo.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  3,66  on  2  and  14  df: p= 0,053
summary(Severas.poi12)
## 
## Call:
## svyglm(formula = Severas ~ Consitencia_Cepillo.rec, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                        0,302      0,137    2,20    0,045 *
## Consitencia_Cepillo.rec2-Medium    0,127      0,103    1,23    0,239  
## Consitencia_Cepillo.rec3-Hard      0,578      0,300    1,92    0,075 .
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,3934)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi13 <- svyglm(Severas ~ IGS.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi13, ~IGS.rec)
## Wald test for IGS.rec
##  in svyglm(formula = Severas ~ IGS.rec, diseniopost1.sub, family = quasipoisson())
## F =  15,08  on  2  and  17  df: p= 0,00017
summary(Severas.poi13)
## 
## Call:
## svyglm(formula = Severas ~ IGS.rec, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  5,63e-16   8,68e-15    0,06  0,94907    
## IGS.rec2-De 45 a 60          6,44e-01   2,34e-01    2,75  0,01372 *  
## IGS.rec3 -Menos o igual a 45 6,37e-01   1,50e-01    4,25  0,00054 ***
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,6348)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi14 <- svyglm(Severas ~ RefrCola.rec1, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi14, ~RefrCola.rec1)
## Wald test for RefrCola.rec1
##  in svyglm(formula = Severas ~ RefrCola.rec1, diseniopost1.sub, family = quasipoisson())
## F =  0,7695  on  1  and  17  df: p= 0,39
summary(Severas.poi14)
## 
## Call:
## svyglm(formula = Severas ~ RefrCola.rec1, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      0,730      0,109    6,72  3,6e-06 ***
## RefrCola.rec12-Mas de 3 veces   -0,220      0,251   -0,88     0,39    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,58)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi15 <- svyglm(Severas ~ JugFrutas.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi15, ~JugFrutas.rec)
## Wald test for JugFrutas.rec
##  in svyglm(formula = Severas ~ JugFrutas.rec, diseniopost1.sub, family = quasipoisson())
## F =  13,86  on  2  and  16  df: p= 0,00032
summary(Severas.poi15)
## 
## Call:
## svyglm(formula = Severas ~ JugFrutas.rec, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                          -7,71e-17   3,85e-15   -0,02  0,98428
## JugFrutas.rec2-Todos los dias         7,36e-01   1,71e-01    4,31  0,00054
## JugFrutas.rec3-Mas de 3 veces al dia  4,51e-01   1,78e-01    2,53  0,02235
##                                         
## (Intercept)                             
## JugFrutas.rec2-Todos los dias        ***
## JugFrutas.rec3-Mas de 3 veces al dia *  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,562)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi16 <- svyglm(Severas ~ Bebidas_energizantes.rec1, diseniopost1.sub, 
    family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi16, ~Bebidas_energizantes.rec1)
## Wald test for Bebidas_energizantes.rec1
##  in svyglm(formula = Severas ~ Bebidas_energizantes.rec1, diseniopost1.sub, 
##     family = quasipoisson())
## F =  1,3  on  1  and  14  df: p= 0,27
summary(Severas.poi16)
## 
## Call:
## svyglm(formula = Severas ~ Bebidas_energizantes.rec1, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                       0,604      0,163    3,70
## Bebidas_energizantes.rec1Mas de 3 veces al dia    0,255      0,224    1,14
##                                                Pr(>|t|)   
## (Intercept)                                      0,0024 **
## Bebidas_energizantes.rec1Mas de 3 veces al dia   0,2733   
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,5544)
## 
## Number of Fisher Scoring iterations: 4


Severas.poi17 <- svyglm(Severas ~ Yogurt.rec1, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi17, ~Yogurt.rec1)
## Wald test for Yogurt.rec1
##  in svyglm(formula = Severas ~ Yogurt.rec1, diseniopost1.sub, family = quasipoisson())
## F =  0,1133  on  1  and  17  df: p= 0,74
summary(Severas.poi17)
## 
## Call:
## svyglm(formula = Severas ~ Yogurt.rec1, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    0,661      0,162    4,07  0,00079 ***
## Yogurt.rec12-Mas de 3 veces   -0,145      0,432   -0,34  0,74056    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,6133)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi18 <- svyglm(Severas ~ Bruxismo.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi18, ~Bruxismo.rec)
## Wald test for Bruxismo.rec
##  in svyglm(formula = Severas ~ Bruxismo.rec, diseniopost1.sub, family = quasipoisson())
## F =  2,395  on  1  and  18  df: p= 0,14
summary(Severas.poi18)
## 
## Call:
## svyglm(formula = Severas ~ Bruxismo.rec, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0,678      0,145    4,69  0,00018 ***
## Bruxismo.rec2-Yes   -0,331      0,214   -1,55  0,13916    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,5971)
## 
## Number of Fisher Scoring iterations: 4


Severas.poi19 <- svyglm(Severas ~ bedeportediario.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi19, ~bedeportediario.rec)
## Wald test for bedeportediario.rec
##  in svyglm(formula = Severas ~ bedeportediario.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  2,99  on  2  and  15  df: p= 0,081
summary(Severas.poi19)
## 
## Call:
## svyglm(formula = Severas ~ bedeportediario.rec, diseniopost1.sub, 
##     family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    0,692882   0,135060    5,13  0,00012 ***
## bedeportediario.rec2-Gatorade -0,459737   0,241094   -1,91  0,07587 .  
## bedeportediario.rec3-other     0,000266   0,135060    0,00  0,99846    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,4979)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi21 <- svyglm(Severas ~ BuchTragar.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi21, ~BuchTragar.rec)
## Wald test for BuchTragar.rec
##  in svyglm(formula = Severas ~ BuchTragar.rec, diseniopost1.sub, 
##     family = quasipoisson())
## F =  7,422  on  1  and  16  df: p= 0,015
summary(Severas.poi20)
## Error: object 'Severas.poi20' not found

Severas.poi22 <- svyglm(Severas ~ FormBeber.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi22, ~FormBeber.rec)
## Wald test for FormBeber.rec
##  in svyglm(formula = Severas ~ FormBeber.rec, diseniopost1.sub, family = quasipoisson())
## F =  0,2905  on  2  and  16  df: p= 0,75
summary(Severas.poi22)
## 
## Call:
## svyglm(formula = Severas ~ FormBeber.rec, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                   0,369      0,335    1,10     0,29
## FormBeber.rec2-Por el pico    0,271      0,412    0,66     0,52
## FormBeber.rec3-Con vaso       0,285      0,379    0,75     0,46
## 
## (Dispersion parameter for quasipoisson family taken to be 0,6355)
## 
## Number of Fisher Scoring iterations: 4

Severas.poi23 <- svyglm(Severas ~ Natac2vec.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi23, ~Natac2vec.rec)
## Wald test for Natac2vec.rec
##  in svyglm(formula = Severas ~ Natac2vec.rec, diseniopost1.sub, family = quasipoisson())
## F =  2,261  on  1  and  15  df: p= 0,15
summary(Severas.poi23)
## 
## Call:
## svyglm(formula = Severas ~ Natac2vec.rec, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## (Intercept)           0,644      0,176    3,65   0,0024 **
## Natac2vec.rec2-Yes   -0,335      0,223   -1,50   0,1534   
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,5248)
## 
## Number of Fisher Scoring iterations: 5

Severas.poi24 <- svyglm(Severas ~ MedResp.rec, diseniopost1.sub, family = quasipoisson())
## Warning: observations with zero weight not used for calculating dispersion
## Warning: observations with zero weight not used for calculating dispersion
regTermTest(Severas.poi24, ~MedResp.rec)
## Wald test for MedResp.rec
##  in svyglm(formula = Severas ~ MedResp.rec, diseniopost1.sub, family = quasipoisson())
## F =  3,608  on  1  and  18  df: p= 0,074
summary(Severas.poi24)
## 
## Call:
## svyglm(formula = Severas ~ MedResp.rec, diseniopost1.sub, family = quasipoisson())
## 
## Survey design:
## subset(diseniopost1, diseniopost1$variables$Erosinbord == 1)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0,662      0,136    4,85  0,00013 ***
## MedResp.rec2-Yes   -0,286      0,150   -1,90  0,07365 .  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0,6128)
## 
## Number of Fisher Scoring iterations: 4