Membangkitkan Data

##Skenario Y: Keputusan menolak/menrima pelamar kerja pada PT A posisi B X1 : Lama pengalaman kerja sebelumnya (bulan) x2 : Status pekerjaan saat ini (0: Bekerja, 1: Tidak bekerja) X3 : Tingkat pendidikan (0: Lulusan Sekolah Menengah, 1: Lulusan Perguruan Tinggi) X4 : IPK (skala 4)

Membangkitkan data X1

X1 : Lama pengalaman kerja sebelumnya (bulan) Membangkitkan variabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

x1 <- round(60*(-(log(1-u)/12)))
x1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

Membangkitkan data X2

Keterangan yang digunakan (Tidak Bekerja) dan (Bekerja)

set.seed(322) ## mengunci data set seed
x2 <- round(runif(n))
x2
##   [1] 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1
##  [38] 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1
##  [75] 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1

Membangkitkan data X3

x3: Tingkat pendidikan x3: Tingkat pendidikan (0: Lulus Sekolah Menengah, 1: Lulus Sekolah Kejuruan)

set.seed(100)
x3 <- round(runif(n))
x3
##   [1] 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##  [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1

Membangkitkan data X4

X4: IPK (skala 4)

set.seed(11)
x4 <- round(runif(n))
x4
##   [1] 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
##  [38] 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0
##  [75] 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0

Membangkitkan data Y

Menentukan koefisien

b0 <- -10
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 1.2
set.seed(2)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapendukung
##   [1] -3.0 -6.5  7.9 -9.5  0.5  2.2 21.2 -3.0  7.9 -6.0 10.2 31.7 -1.8  2.2 18.9
##  [16] 15.4 -6.5 -3.0 -3.0 14.2  7.2 15.4  7.2 17.7  0.5 -6.5 17.7 31.7  7.2 -3.0
##  [31]  1.7 38.2 -2.5 45.7 14.9 32.4 -6.0 10.2 73.7 -6.5 -3.0 27.7 20.7 25.4 10.7
##  [46]  1.7 22.4 31.7 -4.8 -1.8 -1.3 -5.3 -6.0 -2.5  6.7 -6.5 -6.0 -5.3 10.7 -5.3
##  [61]  0.5 11.4 49.2 15.4  1.7 -2.5  1.0  0.5 -6.0 14.9  2.2 -3.0  6.7 52.7 11.9
##  [76] 11.9 27.7 17.7 24.7 -9.5  1.0 10.2 39.4 63.2 -8.3  7.2 17.2 -4.8 -1.3 17.2
##  [91] 34.7 -4.8 -2.5  0.5 35.9 -3.0  8.4 -6.0 -8.3 17.7
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 4.742587e-02 1.501182e-03 9.996294e-01 7.484623e-05 6.224593e-01
##   [6] 9.002495e-01 1.000000e+00 4.742587e-02 9.996294e-01 2.472623e-03
##  [11] 9.999628e-01 1.000000e+00 1.418511e-01 9.002495e-01 1.000000e+00
##  [16] 9.999998e-01 1.501182e-03 4.742587e-02 4.742587e-02 9.999993e-01
##  [21] 9.992540e-01 9.999998e-01 9.992540e-01 1.000000e+00 6.224593e-01
##  [26] 1.501182e-03 1.000000e+00 1.000000e+00 9.992540e-01 4.742587e-02
##  [31] 8.455347e-01 1.000000e+00 7.585818e-02 1.000000e+00 9.999997e-01
##  [36] 1.000000e+00 2.472623e-03 9.999628e-01 1.000000e+00 1.501182e-03
##  [41] 4.742587e-02 1.000000e+00 1.000000e+00 1.000000e+00 9.999775e-01
##  [46] 8.455347e-01 1.000000e+00 1.000000e+00 8.162571e-03 1.418511e-01
##  [51] 2.141650e-01 4.966802e-03 2.472623e-03 7.585818e-02 9.987706e-01
##  [56] 1.501182e-03 2.472623e-03 4.966802e-03 9.999775e-01 4.966802e-03
##  [61] 6.224593e-01 9.999888e-01 1.000000e+00 9.999998e-01 8.455347e-01
##  [66] 7.585818e-02 7.310586e-01 6.224593e-01 2.472623e-03 9.999997e-01
##  [71] 9.002495e-01 4.742587e-02 9.987706e-01 1.000000e+00 9.999932e-01
##  [76] 9.999932e-01 1.000000e+00 1.000000e+00 1.000000e+00 7.484623e-05
##  [81] 7.310586e-01 9.999628e-01 1.000000e+00 1.000000e+00 2.484551e-04
##  [86] 9.992540e-01 1.000000e+00 8.162571e-03 2.141650e-01 1.000000e+00
##  [91] 1.000000e+00 8.162571e-03 7.585818e-02 6.224593e-01 1.000000e+00
##  [96] 4.742587e-02 9.997752e-01 2.472623e-03 2.484551e-04 1.000000e+00
set.seed(3)
y <- rbinom(n,1,p)
y
##   [1] 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##     y x1 x2 x3 x4
## 1   0  2  0  0  0
## 2   0  1  0  0  0
## 3   1  4  0  1  1
## 4   0  0  1  0  0
## 5   1  3  0  0  0
## 6   1  3  1  0  1
## 7   1  8  1  1  0
## 8   0  2  0  0  0
## 9   1  4  0  1  1
## 10  0  1  1  0  0
## 11  1  5  0  1  0
## 12  1 11  1  1  0
## 13  0  2  0  0  1
## 14  1  3  1  0  1
## 15  1  7  1  1  1
## 16  1  6  1  1  1
## 17  0  1  0  0  0
## 18  0  2  0  0  0
## 19  0  2  0  0  0
## 20  1  6  1  1  0
## 21  1  4  1  1  0
## 22  1  6  1  1  1
## 23  1  4  1  1  0
## 24  1  7  1  1  0
## 25  1  3  0  0  0
## 26  0  1  0  0  0
## 27  1  7  1  1  0
## 28  1 11  1  1  0
## 29  1  4  1  1  0
## 30  0  2  0  0  0
## 31  1  3  0  0  1
## 32  1 13  0  1  0
## 33  0  2  1  0  0
## 34  1 15  1  1  0
## 35  1  6  0  1  1
## 36  1 11  0  1  1
## 37  0  1  1  0  0
## 38  1  5  0  1  0
## 39  1 23  1  1  0
## 40  0  1  0  0  0
## 41  0  2  0  0  0
## 42  1 10  0  1  0
## 43  1  8  0  1  0
## 44  1  9  0  1  1
## 45  1  5  1  1  0
## 46  1  3  0  0  1
## 47  1  8  1  1  1
## 48  1 11  1  1  0
## 49  0  1  1  0  1
## 50  0  2  0  0  1
## 51  0  2  1  0  1
## 52  0  1  0  0  1
## 53  0  1  1  0  0
## 54  0  2  1  0  0
## 55  1  4  0  1  0
## 56  0  1  0  0  0
## 57  0  1  1  0  0
## 58  0  1  0  0  1
## 59  1  5  1  1  0
## 60  0  1  0  0  1
## 61  1  3  0  0  0
## 62  1  5  0  1  1
## 63  1 16  1  1  0
## 64  1  6  1  1  1
## 65  1  3  0  0  1
## 66  0  2  1  0  0
## 67  0  3  1  0  0
## 68  1  3  0  0  0
## 69  0  1  1  0  0
## 70  1  6  0  1  1
## 71  1  3  1  0  1
## 72  0  2  0  0  0
## 73  1  4  0  1  0
## 74  1 17  1  1  0
## 75  1  5  1  1  1
## 76  1  5  1  1  1
## 77  1 10  0  1  0
## 78  1  7  1  1  0
## 79  1  9  1  1  0
## 80  0  0  1  0  0
## 81  1  3  1  0  0
## 82  1  5  0  1  0
## 83  1 13  0  1  1
## 84  1 20  1  1  0
## 85  0  0  1  0  1
## 86  1  4  1  1  0
## 87  1  7  0  1  0
## 88  0  1  1  0  1
## 89  0  2  1  0  1
## 90  1  7  0  1  0
## 91  1 12  0  1  0
## 92  0  1  1  0  1
## 93  0  2  1  0  0
## 94  1  3  0  0  0
## 95  1 12  0  1  1
## 96  0  2  0  0  0
## 97  1  4  1  1  1
## 98  0  1  1  0  0
## 99  0  0  1  0  1
## 100 1  7  1  1  0

Analisis refresi Logistik

modelreglog <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"), data = datagab)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -162.29   42024.25  -0.004    0.997
## x1             61.10   15805.21   0.004    0.997
## x2            -20.99    9820.82  -0.002    0.998
## x3            -38.43   29861.73  -0.001    0.999
## x4             20.28    8859.52   0.002    0.998
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 132.8128  on 99  degrees of freedom
## Residual deviance:   2.7726  on 95  degrees of freedom
## AIC: 12.773
## 
## Number of Fisher Scoring iterations: 25