Exercise 4

Let S be the number of heads in 1,000,000 tosses of a fair coin. Use (a) Chebyshev’s inequality, and (b) the Central Limit Theorem, to estimate the probability that S lies between 499,500 and 500,500. Use the same two methods to estimate the probability that S lies between 499,000 and 501,000, and the probability that S lies between 498,500 and 501,500.

Let \(n\) be the number of coin tosses (in this case, \(n = 1,000,000\)). \ Let \(p\) be the probability of getting a head on a single toss (since the coin is fair, \(p = 0.5\)). \ Let \(\mu\) be the mean of the binomial distribution, which is \(n \times p\). \ Let \(\sigma^2\) be the variance of the binomial distribution, which is \(n \times p \times (1-p)\). \ Let \(\sigma\) be the standard deviation of the binomial distribution, which is \(\sqrt{n \times p \times (1-p)}\).

We want to estimate the probability that \(S\), the number of heads in \(n\) tosses, lies within certain ranges.

\[\begin{align*} \mu &= n \times p = 1,000,000 \times 0.5 = 500,000 \\ \sigma &= \sqrt{n \times p \times (1-p)} = \sqrt{1,000,000 \times 0.5 \times 0.5} = \sqrt{250,000} = 500 \end{align*}\]

So, \(k = \frac{500}{500} = 1\).

According to Chebyshev’s inequality, the probability that \(S\) falls within \(499,500\) and \(500,500\) is at least \(1 - \frac{1}{1^2} = 0\).

The same as above, but now \(k = \frac{1000}{500} = 2\).

According to Chebyshev’s inequality, the probability that \(S\) falls within \(499,000\) and \(501,000\) is at least \(1 - \frac{1}{2^2} = 0.75\).

The same as above, but now \(k = \frac{1500}{500} = 3\).

According to Chebyshev’s inequality, the probability that \(S\) falls within \(498,500\) and \(501,500\) is at least \(1 - \frac{1}{3^2} = \frac{8}{9}\).

The Central Limit Theorem states that the distribution of the sum (or average) of a large number of independent, identically distributed random variables approaches a normal distribution, regardless of the original distribution. The mean of the distribution approaches \(\mu\), and the standard deviation approaches \(\frac{\sigma}{\sqrt{n}}\).

For all three intervals, we can use the CLT to approximate the probabilities using the normal distribution.

\[\begin{align*} \mu &= 500,000 \\ \sigma &= 500 \end{align*}\]

The width of each interval is 1000. So, we need to calculate the z-scores for the lower and upper bounds of each interval and then find the area under the normal curve between those z-scores.

Let’s use the z-score formula: \(z = \frac{x - \mu}{\sigma}\), where \(x\) is the value of the lower or upper bound of the interval.

For example, for the interval \(499,500 \leq S \leq 500,500\): \[\begin{align*} z_{\text{lower}} &= \frac{499,500 - 500,000}{500} = -1 \\ z_{\text{upper}} &= \frac{500,500 - 500,000}{500} = 1 \end{align*}\]

We can then look up the area under the standard normal curve between \(z_{\text{lower}}\) and \(z_{\text{upper}}\) to get the probability.

Similarly, we calculate for the other intervals. The probabilities can be calculated using a standard normal distribution table or using software.

\end{document}

LS0tDQp0aXRsZTogIkRpc2N1c3Npb24gOSINCmF1dGhvcjogIkxhdXJhIFAiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCg0KDQojIyMgRXhlcmNpc2UgNA0KDQpMZXQgUyBiZSB0aGUgbnVtYmVyIG9mIGhlYWRzIGluIDEsMDAwLDAwMCB0b3NzZXMgb2YgYSBmYWlyIGNvaW4uIFVzZSAoYSkgQ2hlYnlzaGV24oCZcyBpbmVxdWFsaXR5LCBhbmQgKGIpIHRoZSBDZW50cmFsIExpbWl0IFRoZW9yZW0sIHRvIGVzdGltYXRlIHRoZSBwcm9iYWJpbGl0eSB0aGF0IFMgbGllcyBiZXR3ZWVuIDQ5OSw1MDAgYW5kIDUwMCw1MDAuIFVzZSB0aGUgc2FtZSB0d28gbWV0aG9kcyB0byBlc3RpbWF0ZSB0aGUgcHJvYmFiaWxpdHkgdGhhdCBTIGxpZXMgYmV0d2VlbiA0OTksMDAwIGFuZCA1MDEsMDAwLCBhbmQgdGhlIHByb2JhYmlsaXR5IHRoYXQgUyBsaWVzIGJldHdlZW4gNDk4LDUwMCBhbmQgNTAxLDUwMC4NCg0KDQoNCg0KDQpcdGV4dGJme1VzaW5nIENoZWJ5c2hldidzIEluZXF1YWxpdHk6fQ0KDQpMZXQgJG4kIGJlIHRoZSBudW1iZXIgb2YgY29pbiB0b3NzZXMgKGluIHRoaXMgY2FzZSwgJG4gPSAxLDAwMCwwMDAkKS4gXFwNCkxldCAkcCQgYmUgdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgYSBoZWFkIG9uIGEgc2luZ2xlIHRvc3MgKHNpbmNlIHRoZSBjb2luIGlzIGZhaXIsICRwID0gMC41JCkuIFxcDQpMZXQgJFxtdSQgYmUgdGhlIG1lYW4gb2YgdGhlIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiwgd2hpY2ggaXMgJG4gXHRpbWVzIHAkLiBcXA0KTGV0ICRcc2lnbWFeMiQgYmUgdGhlIHZhcmlhbmNlIG9mIHRoZSBiaW5vbWlhbCBkaXN0cmlidXRpb24sIHdoaWNoIGlzICRuIFx0aW1lcyBwIFx0aW1lcyAoMS1wKSQuIFxcDQpMZXQgJFxzaWdtYSQgYmUgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgYmlub21pYWwgZGlzdHJpYnV0aW9uLCB3aGljaCBpcyAkXHNxcnR7biBcdGltZXMgcCBcdGltZXMgKDEtcCl9JC4NCg0KV2Ugd2FudCB0byBlc3RpbWF0ZSB0aGUgcHJvYmFiaWxpdHkgdGhhdCAkUyQsIHRoZSBudW1iZXIgb2YgaGVhZHMgaW4gJG4kIHRvc3NlcywgbGllcyB3aXRoaW4gY2VydGFpbiByYW5nZXMuDQoNClx0ZXh0YmZ7KGEpIEVzdGltYXRlIGZvciAkNDk5LDUwMCBcbGVxIFMgXGxlcSA1MDAsNTAwJDp9DQoNClxiZWdpbnthbGlnbip9DQpcbXUgJj0gbiBcdGltZXMgcCA9IDEsMDAwLDAwMCBcdGltZXMgMC41ID0gNTAwLDAwMCBcXA0KXHNpZ21hICY9IFxzcXJ0e24gXHRpbWVzIHAgXHRpbWVzICgxLXApfSA9IFxzcXJ0ezEsMDAwLDAwMCBcdGltZXMgMC41IFx0aW1lcyAwLjV9ID0gXHNxcnR7MjUwLDAwMH0gPSA1MDANClxlbmR7YWxpZ24qfQ0KDQpTbywgJGsgPSBcZnJhY3s1MDB9ezUwMH0gPSAxJC4NCg0KQWNjb3JkaW5nIHRvIENoZWJ5c2hldidzIGluZXF1YWxpdHksIHRoZSBwcm9iYWJpbGl0eSB0aGF0ICRTJCBmYWxscyB3aXRoaW4gJDQ5OSw1MDAkIGFuZCAkNTAwLDUwMCQgaXMgYXQgbGVhc3QgJDEgLSBcZnJhY3sxfXsxXjJ9ID0gMCQuDQoNClx0ZXh0YmZ7KGIpIEVzdGltYXRlIGZvciAkNDk5LDAwMCBcbGVxIFMgXGxlcSA1MDEsMDAwJDp9DQoNClRoZSBzYW1lIGFzIGFib3ZlLCBidXQgbm93ICRrID0gXGZyYWN7MTAwMH17NTAwfSA9IDIkLg0KDQpBY2NvcmRpbmcgdG8gQ2hlYnlzaGV2J3MgaW5lcXVhbGl0eSwgdGhlIHByb2JhYmlsaXR5IHRoYXQgJFMkIGZhbGxzIHdpdGhpbiAkNDk5LDAwMCQgYW5kICQ1MDEsMDAwJCBpcyBhdCBsZWFzdCAkMSAtIFxmcmFjezF9ezJeMn0gPSAwLjc1JC4NCg0KXHRleHRiZnsoYykgRXN0aW1hdGUgZm9yICQ0OTgsNTAwIFxsZXEgUyBcbGVxIDUwMSw1MDAkOn0NCg0KVGhlIHNhbWUgYXMgYWJvdmUsIGJ1dCBub3cgJGsgPSBcZnJhY3sxNTAwfXs1MDB9ID0gMyQuDQoNCkFjY29yZGluZyB0byBDaGVieXNoZXYncyBpbmVxdWFsaXR5LCB0aGUgcHJvYmFiaWxpdHkgdGhhdCAkUyQgZmFsbHMgd2l0aGluICQ0OTgsNTAwJCBhbmQgJDUwMSw1MDAkIGlzIGF0IGxlYXN0ICQxIC0gXGZyYWN7MX17M14yfSA9IFxmcmFjezh9ezl9JC4NCg0KXHRleHRiZntVc2luZyBDZW50cmFsIExpbWl0IFRoZW9yZW0gKENMVCk6fQ0KDQpUaGUgQ2VudHJhbCBMaW1pdCBUaGVvcmVtIHN0YXRlcyB0aGF0IHRoZSBkaXN0cmlidXRpb24gb2YgdGhlIHN1bSAob3IgYXZlcmFnZSkgb2YgYSBsYXJnZSBudW1iZXIgb2YgaW5kZXBlbmRlbnQsIGlkZW50aWNhbGx5IGRpc3RyaWJ1dGVkIHJhbmRvbSB2YXJpYWJsZXMgYXBwcm9hY2hlcyBhIG5vcm1hbCBkaXN0cmlidXRpb24sIHJlZ2FyZGxlc3Mgb2YgdGhlIG9yaWdpbmFsIGRpc3RyaWJ1dGlvbi4gVGhlIG1lYW4gb2YgdGhlIGRpc3RyaWJ1dGlvbiBhcHByb2FjaGVzICRcbXUkLCBhbmQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBhcHByb2FjaGVzICRcZnJhY3tcc2lnbWF9e1xzcXJ0e259fSQuDQoNCkZvciBhbGwgdGhyZWUgaW50ZXJ2YWxzLCB3ZSBjYW4gdXNlIHRoZSBDTFQgdG8gYXBwcm94aW1hdGUgdGhlIHByb2JhYmlsaXRpZXMgdXNpbmcgdGhlIG5vcm1hbCBkaXN0cmlidXRpb24uDQoNClxiZWdpbnthbGlnbip9DQpcbXUgJj0gNTAwLDAwMCBcXA0KXHNpZ21hICY9IDUwMA0KXGVuZHthbGlnbip9DQoNClRoZSB3aWR0aCBvZiBlYWNoIGludGVydmFsIGlzIDEwMDAuIFNvLCB3ZSBuZWVkIHRvIGNhbGN1bGF0ZSB0aGUgei1zY29yZXMgZm9yIHRoZSBsb3dlciBhbmQgdXBwZXIgYm91bmRzIG9mIGVhY2ggaW50ZXJ2YWwgYW5kIHRoZW4gZmluZCB0aGUgYXJlYSB1bmRlciB0aGUgbm9ybWFsIGN1cnZlIGJldHdlZW4gdGhvc2Ugei1zY29yZXMuDQoNCkxldCdzIHVzZSB0aGUgei1zY29yZSBmb3JtdWxhOiAkeiA9IFxmcmFje3ggLSBcbXV9e1xzaWdtYX0kLCB3aGVyZSAkeCQgaXMgdGhlIHZhbHVlIG9mIHRoZSBsb3dlciBvciB1cHBlciBib3VuZCBvZiB0aGUgaW50ZXJ2YWwuDQoNCkZvciBleGFtcGxlLCBmb3IgdGhlIGludGVydmFsICQ0OTksNTAwIFxsZXEgUyBcbGVxIDUwMCw1MDAkOg0KXGJlZ2lue2FsaWduKn0NCnpfe1x0ZXh0e2xvd2VyfX0gJj0gXGZyYWN7NDk5LDUwMCAtIDUwMCwwMDB9ezUwMH0gPSAtMSBcXA0Kel97XHRleHR7dXBwZXJ9fSAmPSBcZnJhY3s1MDAsNTAwIC0gNTAwLDAwMH17NTAwfSA9IDENClxlbmR7YWxpZ24qfQ0KDQpXZSBjYW4gdGhlbiBsb29rIHVwIHRoZSBhcmVhIHVuZGVyIHRoZSBzdGFuZGFyZCBub3JtYWwgY3VydmUgYmV0d2VlbiAkel97XHRleHR7bG93ZXJ9fSQgYW5kICR6X3tcdGV4dHt1cHBlcn19JCB0byBnZXQgdGhlIHByb2JhYmlsaXR5Lg0KDQpTaW1pbGFybHksIHdlIGNhbGN1bGF0ZSBmb3IgdGhlIG90aGVyIGludGVydmFscy4gVGhlIHByb2JhYmlsaXRpZXMgY2FuIGJlIGNhbGN1bGF0ZWQgdXNpbmcgYSBzdGFuZGFyZCBub3JtYWwgZGlzdHJpYnV0aW9uIHRhYmxlIG9yIHVzaW5nIHNvZnR3YXJlLg0KDQpcZW5ke2RvY3VtZW50fQ0K