Introduction to Probability, Grinstead, C. Snell, J.,
1997
Page 338
Question 2
Question
Let S200 be the number of heads that turn up in 200 tosses of a
fair coin. Estimate (a) P(S200 = 100).
(b) P(S200 = 90). (c) P(S200 =
80).
Binomial Probability
P(X = k) = \(\binom{n}{k} \times p^k \times (1
- p)^{n - k}\)
a)P(X = k) = \(\binom{200}{100} \times 0.5^{100} \times (1 - 0.5)^{200 - 100}\)
n <- 200 #Number of trials
p <- 0.5 #Probability of getting a head
k <- 100 #number of heads
#proability
dbinom<-dbinom(k,n,p)
dbinom
## [1] 0.05634848
b)P(X = k) = \(\binom{200}{90} \times 0.5^{90} \times (1 - 0.5)^{200 - 90}\)
n <- 200 #Number of trials
p <- 0.5 #Probability of getting a head
k <- 90 #number of heads
#proability
dbinom<-dbinom(k,n,p)
dbinom
## [1] 0.02079869
c)P(X = k) = \(\binom{200}{80} \times 0.5^{80} \times (1 - 0.5)^{200 - 80}\)
n <- 200 #Number of trials
p <- 0.5 #Probability of getting a head
k <- 80 #number of heads
#proability
dbinom<-dbinom(k,n,p)
dbinom
## [1] 0.001025104