1 PREPARATION

1.1 Merge

#- Within variables
Wdata=import("C:/Users/Eason Zhang/Dropbox/social impact project/Final analysis/employeedata.sav")%>%as.data.table()
numerical_variable_names <- names(Wdata)[sapply(Wdata, is.numeric)]
Wdata=group_mean_center(Wdata, numerical_variable_names,by="FactoryAssessedID", add.suffix=".GroC")
added(Wdata, {
  wage.SD = sd(wage, na.rm = TRUE)
  stress.SD = sd(stress, na.rm = TRUE)
  mentalhealth.SD = sd(mentalhealth, na.rm = TRUE)},by=FactoryAssessedID)    
#-- Within data check
matching_variables.W <- cc("mentalhealth,stress,wage,migrant10.GroC,
                           mentalhealth.SD,stress.SD,wage.SD")
contains_variables.W <- names(Wdata) %in% matching_variables.W
matching_variables.W <- names(Wdata)[contains_variables.W]
matching_variables.W

#- Between variables
#-- BA data
BAdata=import("C:/Users/Eason Zhang/Dropbox/social impact project/Final analysis/BA20.1920.finalanalysis.sav")%>%as.data.table()
#-- BM data
BMdata<- import("C:/Users/Eason Zhang/Dropbox/social impact project/Final analysis/managerdata.sav")%>%as.data.table()
BMdata1=BMdata[year == 2019]
BMdata2=BMdata[year == 2020]
BMdata_mean <- BMdata[, .SD, .SDcols = sapply(BMdata, is.numeric)]
BMdata_mean <- BMdata_mean[, lapply(.SD, mean, na.rm = TRUE), by = .(FactoryAssessedID)]
B.Aggregated <- unique(Wdata[, .(FactoryAssessedID, mentalhealth_mean, stress_mean, wage_mean, mentalhealth.SD, stress.SD, wage.SD)], by = "FactoryAssessedID")
#--- Cobmine BM data
setnames(BMdata1, old = names(BMdata1), new = paste0("BM19.", names(BMdata1)))
setnames(BMdata2, old = names(BMdata2), new = paste0("BM20.", names(BMdata2)))
setnames(BMdata_mean, old = names(BMdata_mean), new = paste0("BM.", names(BMdata_mean)))
setnames(BMdata_mean, "BM.FactoryAssessedID", "FactoryAssessedID")
setnames(BMdata1, "BM19.FactoryAssessedID", "FactoryAssessedID")
setnames(BMdata2, "BM20.FactoryAssessedID", "FactoryAssessedID")
Bdata<- Reduce(function(x, y) merge(x, y, by = "FactoryAssessedID", all = TRUE),list(BMdata_mean, BMdata1, BMdata2))
Bdata <- merge(BAdata, Bdata, by = "FactoryAssessedID", all = T)
Bdata2 <- merge(Bdata, B.Aggregated, by = "FactoryAssessedID", all = T)
#-- Between data check
matching_variables.B <- cc("BM.responsiblesourcing,BM19.responsiblesourcing,BM20.responsiblesourcing,BA1920FOApractices,BA20FOApractices,BA1920discriminate4prac,BA20discriminate4prac,BA1920targetedpractices,BA20targetedpractices,FactoryAssessedID, mentalhealth_mean, stress_mean, wage_mean, mentalhealth.SD, stress.SD, wage.SD")
contains_variables.B <- names(Bdata2) %in% matching_variables.B
matching_variables.B <- names(Bdata2)[contains_variables.B]
matching_variables.B
#- Full data
Bdata2=Bdata2[, c("mentalhealth_mean", "stress_mean", "wage_mean", 
          "mentalhealth.SD", "stress.SD", "wage.SD") := NULL]
BWdata2 <- merge(Bdata2, Wdata, by = "FactoryAssessedID", all = T)
BWdata2$clus <- BWdata2$FactoryAssessedID

#- Export
export(Bdata2,"Bdata3.sav")
export(BWdata2,"BWdata3.sav")

1.2 Loading data

There is a lot of missing data in our database.

dat=import("BWdata3.sav")%>%as.data.table() 
Bdata<- import("Bdata3.sav")%>%as.data.table()
dat3=dat[round == 3]

1.3 Model

Theoretical model
Theoretical model
Statistical model
Statistical model

2 OVERVIEW

Freq(dat$round)
## Frequency Statistics:
## ───────────────
##          N    %
## ───────────────
## 1     1730 33.5
## 2     1666 32.3
## 3     1756 34.0
## (NA)    12  0.2
## ───────────────
## Total N = 5,164
## Valid N = 5,152

One-round analysis: A. 3; B. 2 C. 1

Two-round analysis: D. 3&2; E. 3&1; F. 2&1

Three-round analysis: G. 3&2&1

3 A. 3rd ROUND DATA

data=dat[round == 3]
Freq(data$round)
## Frequency Statistics:
## ─────────────
##       N     %
## ─────────────
## 3  1756 100.0
## ─────────────
## Total N = 1,756

3.1 I check for cw2: Cross-level interaction of M

3.1.1 BA1920FOApractices

mentalhealth.BA1920FOApractices=lmer(mentalhealth~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA1920FOApractices=lmer(stress~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920FOApractices=lmer(wage~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920FOApractices, stress.BA1920FOApractices, wage.BA1920FOApractices))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────
##                                    (1) mentalhealth  (2) stress  (3) wage   
## ────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.098             3.745      378.106 *
##                                      (1.701)           (2.417)    (147.512) 
## BA1920FOApractices                    0.011            -0.034       -7.288  
##                                      (0.086)           (0.123)      (7.477) 
## migrant10                             6.805 *          -2.403      281.488 *
##                                      (2.750)           (2.570)    (125.870) 
## migrant10_mean                       -4.163            -0.669     -506.045  
##                                      (3.615)           (4.352)    (286.715) 
## BA1920FOApractices:migrant10         -0.346 *           0.157      -15.141 *
##                                      (0.141)           (0.132)      (6.467) 
## BA1920FOApractices:migrant10_mean     0.205             0.009       24.703  
##                                      (0.183)           (0.222)     (14.500) 
## ────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.012             0.030        0.040  
## Conditional R^2                       0.181             0.060        0.360  
## AIC                                3933.788          6059.325    17848.612  
## BIC                                3985.815          6113.650    17902.788  
## Num. obs.                          1343              1690         1665      
## Num. groups: clus                    66                66           66      
## Var: clus (Intercept)                 0.021             0.173      695.328  
## Var: clus migrant10                   0.388             0.298     1264.509  
## Cov: clus (Intercept) migrant10      -0.055            -0.223     -288.457  
## Var: Residual                         0.999             2.026     2389.298  
## ────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(stress.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(wage.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

3.1.2 BA20FOApractices

mentalhealth.BA20FOApractices=lmer(mentalhealth~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20FOApractices=lmer(stress~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20FOApractices=lmer(wage~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20FOApractices, stress.BA20FOApractices, wage.BA20FOApractices))
## 
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                                  (1) mentalhealth  (2) stress  (3) wage    
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.988 **          3.701      337.226 * 
##                                    (1.838)           (2.855)    (168.468)  
## BA20FOApractices                   -0.088            -0.035       -5.244   
##                                    (0.092)           (0.145)      (8.489)  
## migrant10                          12.968 **         -6.416 *    396.245 * 
##                                    (4.925)           (3.131)    (155.001)  
## migrant10_mean                    -11.243 *           3.366     -432.188   
##                                    (4.472)           (5.656)    (384.388)  
## BA20FOApractices:migrant10         -0.650 **          0.361 *    -20.503 **
##                                    (0.247)           (0.158)      (7.841)  
## BA20FOApractices:migrant10_mean     0.566 *          -0.191       20.901   
##                                    (0.224)           (0.285)     (19.243)  
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.028             0.052        0.051   
## Conditional R^2                     0.264             0.094        0.434   
## AIC                              2246.304          3465.962    10086.196   
## BIC                              2292.948          3514.735    10134.855   
## Num. obs.                         784               970          959       
## Num. groups: clus                  44                44           44       
## Var: clus (Intercept)               0.017             0.218      789.517   
## Var: clus migrant10                 0.601             0.338     1318.768   
## Cov: clus (Intercept) migrant10    -0.050            -0.271     -255.259   
## Var: Residual                       0.909             1.967     1910.987   
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(stress.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(wage.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

3.1.3 BA1920discriminate4prac

mentalhealth.BA1920discriminate4prac=lmer(mentalhealth~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA1920discriminate4prac=lmer(stress~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920discriminate4prac=lmer(wage~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920discriminate4prac, stress.BA1920discriminate4prac, wage.BA1920discriminate4prac))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress  (3) wage    
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.126             2.163      406.518 **
##                                           (1.789)           (1.778)    (141.449)  
## BA1920discriminate4prac                    0.552             0.219      -43.798   
##                                           (0.452)           (0.454)     (35.815)  
## migrant10                                 -0.138             0.956       29.345   
##                                           (1.326)           (1.261)     (62.273)  
## migrant10_mean                             2.834             0.550     -280.043   
##                                           (2.834)           (2.481)    (207.741)  
## BA1920discriminate4prac:migrant10          0.045            -0.084      -11.093   
##                                           (0.342)           (0.328)     (16.211)  
## BA1920discriminate4prac:migrant10_mean    -0.752            -0.230       65.974   
##                                           (0.716)           (0.637)     (52.670)  
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.002             0.027        0.032   
## Conditional R^2                            0.186             0.058        0.368   
## AIC                                     3932.120          6056.879    17846.788   
## BIC                                     3984.147          6111.204    17900.964   
## Num. obs.                               1343              1690         1665       
## Num. groups: clus                         66                66           66       
## Var: clus (Intercept)                      0.031             0.169      714.091   
## Var: clus migrant10                        0.443             0.282     1391.197   
## Cov: clus (Intercept) migrant10           -0.076            -0.211     -316.643   
## Var: Residual                              0.998             2.028     2389.350   
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(stress.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(wage.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

3.1.4 BA20discriminate4prac

mentalhealth.BA20discriminate4prac=lmer(mentalhealth~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20discriminate4prac=lmer(stress~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20discriminate4prac=lmer(wage~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20discriminate4prac, stress.BA20discriminate4prac, wage.BA20discriminate4prac))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress  (3) wage    
## ────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.263             3.424      578.933 **
##                                         (2.418)           (2.209)    (183.368)  
## BA20discriminate4prac                    0.495            -0.124      -87.203   
##                                         (0.608)           (0.562)     (46.228)  
## migrant10                                1.418            -1.023      109.091   
##                                         (2.429)           (1.818)     (85.307)  
## migrant10_mean                           0.851             1.269     -557.822   
##                                         (4.114)           (3.150)    (290.183)  
## BA20discriminate4prac:migrant10         -0.361             0.445      -30.599   
##                                         (0.619)           (0.469)     (22.017)  
## BA20discriminate4prac:migrant10_mean    -0.186            -0.398      136.462   
##                                         (1.035)           (0.807)     (73.253)  
## ────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.005             0.045        0.056   
## Conditional R^2                          0.271             0.092        0.431   
## AIC                                   2246.134          3465.777    10080.336   
## BIC                                   2292.778          3514.550    10128.995   
## Num. obs.                              784               970          959       
## Num. groups: clus                       44                44           44       
## Var: clus (Intercept)                    0.034             0.209      765.758   
## Var: clus migrant10                      0.757             0.405     1515.093   
## Cov: clus (Intercept) migrant10         -0.107            -0.288     -356.668   
## Var: Residual                            0.909             1.972     1911.968   
## ────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(stress.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(wage.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

3.1.5 BA1920targetedpractices

mentalhealth.BA1920targetedpractices=lmer(mentalhealth~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA1920targetedpractices=lmer(stress~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920targetedpractices=lmer(wage~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920targetedpractices, stress.BA1920targetedpractices, wage.BA1920targetedpractices))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress   (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.592             3.605 **    380.477 ***
##                                           (1.359)           (1.327)     (103.053)   
## BA1920targetedpractices                    0.176            -0.061       -15.080    
##                                           (0.138)           (0.137)      (10.543)   
## migrant10                                  1.267            -0.030        78.992    
##                                           (1.285)           (1.075)      (53.297)   
## migrant10_mean                             1.524            -0.624      -283.339    
##                                           (2.422)           (2.015)     (168.036)   
## BA1920targetedpractices:migrant10         -0.133             0.071       -10.023    
##                                           (0.137)           (0.116)       (5.765)   
## BA1920targetedpractices:migrant10_mean    -0.166             0.025        27.323    
##                                           (0.249)           (0.210)      (17.305)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.006             0.027         0.043    
## Conditional R^2                            0.188             0.057         0.367    
## AIC                                     3936.054          6062.975     17849.806    
## BIC                                     3988.081          6117.300     17903.982    
## Num. obs.                               1343              1690          1665        
## Num. groups: clus                         66                66            66        
## Var: clus (Intercept)                      0.023             0.157       681.623    
## Var: clus migrant10                        0.444             0.268      1317.940    
## Cov: clus (Intercept) migrant10           -0.072            -0.197      -289.455    
## Var: Residual                              0.998             2.029      2389.709    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(stress.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(wage.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

3.1.6 BA20targetedpractices

mentalhealth.BA20targetedpractices=lmer(mentalhealth~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20targetedpractices=lmer(stress~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20targetedpractices=lmer(wage~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20targetedpractices, stress.BA20targetedpractices, wage.BA20targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress   (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.035             4.195 **    412.932 ***
##                                         (1.429)           (1.435)     (113.736)   
## BA20targetedpractices                    0.122            -0.131       -18.422    
##                                         (0.145)           (0.149)      (11.630)   
## migrant10                                0.725            -0.779        86.650    
##                                         (1.710)           (1.206)      (57.923)   
## migrant10_mean                           0.142            -1.169      -346.382    
##                                         (2.647)           (2.256)     (195.737)   
## BA20targetedpractices:migrant10         -0.078             0.163       -10.611    
##                                         (0.185)           (0.132)       (6.385)   
## BA20targetedpractices:migrant10_mean     0.005             0.088        34.247    
##                                         (0.273)           (0.239)      (20.293)   
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.008             0.047         0.051    
## Conditional R^2                          0.275             0.093         0.434    
## AIC                                   2252.242          3471.949     10088.206    
## BIC                                   2298.886          3520.722     10136.865    
## Num. obs.                              784               970           959        
## Num. groups: clus                       44                44            44        
## Var: clus (Intercept)                    0.027             0.212       749.745    
## Var: clus migrant10                      0.785             0.364      1469.150    
## Cov: clus (Intercept) migrant10         -0.111            -0.272      -294.527    
## Var: Residual                            0.909             1.970      1913.017    
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(stress.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(wage.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

3.2 II check for ab2: Main effect of M on W (Mplus approach)

3.2.1 BM.responsiblesourcing

BA1920FOApractices.BM.responsiblesourcing=lmer(BA1920FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM.responsiblesourcing=lmer(BA20FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM.responsiblesourcing=lmer(BA1920discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM.responsiblesourcing=lmer(BA20discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM.responsiblesourcing=lmer(BA1920targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM.responsiblesourcing=lmer(BA20targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM.responsiblesourcing, BA20FOApractices.BM.responsiblesourcing, BA1920discriminate4prac.BM.responsiblesourcing, BA20discriminate4prac.BM.responsiblesourcing, BA1920targetedpractices.BM.responsiblesourcing, BA20targetedpractices.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                         (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 19.055 ***              18.910 ***             3.813 ***                    3.874 ***                  9.121 ***                    8.859 ***           
##                             (0.055)                 (0.065)               (0.021)                      (0.022)                    (0.060)                      (0.081)              
## BM.responsiblesourcing       0.185 ***               0.333 ***             0.023 **                     0.012                      0.081 ***                    0.094 ***           
##                             (0.019)                 (0.023)               (0.007)                      (0.008)                    (0.021)                      (0.029)              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.693                   0.870                 0.190                        0.070                      0.266                        0.247               
## Conditional R^2              1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                     -20816.929              -17259.765            -22545.406                   -14159.220                 -20827.300                   -17284.903               
## BIC                     -20796.968              -17241.844            -22525.445                   -14141.300                 -20807.339                   -17266.983               
## Num. obs.                 1086                     652                  1086                          652                       1086                          652                   
## Num. groups: clus           46                      31                    46                           31                         46                           31                   
## Var: clus (Intercept)        0.033                   0.035                 0.005                        0.004                      0.040                        0.057               
## Var: Residual                0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

3.2.2 BM19.responsiblesourcing

BA1920FOApractices.BM19.responsiblesourcing=lmer(BA1920FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM19.responsiblesourcing=lmer(BA20FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM19.responsiblesourcing=lmer(BA1920discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM19.responsiblesourcing=lmer(BA20discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM19.responsiblesourcing=lmer(BA1920targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM19.responsiblesourcing=lmer(BA20targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM19.responsiblesourcing, BA20FOApractices.BM19.responsiblesourcing, BA1920discriminate4prac.BM19.responsiblesourcing, BA20discriminate4prac.BM19.responsiblesourcing, BA1920targetedpractices.BM19.responsiblesourcing, BA20targetedpractices.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.154 ***              19.199 ***             3.636 ***                    3.608 ***                  8.506 ***                   8.335 ***            
##                               (0.060)                 (0.068)               (0.023)                      (0.026)                    (0.068)                     (0.083)               
## BM19.responsiblesourcing       0.155 ***               0.232 ***             0.089 ***                    0.103 ***                  0.277 ***                   0.292 ***            
##                               (0.018)                 (0.021)               (0.007)                      (0.008)                    (0.021)                     (0.026)               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.674                   0.821                 0.838                        0.893                      0.837                       0.834                
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                       1.000                
## AIC                       -13646.961              -14321.831            -21765.239                   -15856.399                 -19141.811                   -9889.651                
## BIC                       -13628.611              -14304.725            -21746.889                   -15839.292                 -19123.461                   -9872.544                
## Num. obs.                    726                     532                   726                          532                        726                         532                    
## Num. groups: clus             33                      24                    33                           24                         33                          24                    
## Var: clus (Intercept)          0.035                   0.034                 0.005                        0.004                      0.046                       0.050                
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                       0.000                
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

3.2.3 BM20.responsiblesourcing

BA1920FOApractices.BM20.responsiblesourcing=lmer(BA1920FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM20.responsiblesourcing=lmer(BA20FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM20.responsiblesourcing=lmer(BA1920discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM20.responsiblesourcing=lmer(BA20discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM20.responsiblesourcing=lmer(BA1920targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM20.responsiblesourcing=lmer(BA20targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM20.responsiblesourcing, BA20FOApractices.BM20.responsiblesourcing, BA1920discriminate4prac.BM20.responsiblesourcing, BA20discriminate4prac.BM20.responsiblesourcing, BA1920targetedpractices.BM20.responsiblesourcing, BA20targetedpractices.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.465 ***              19.410 ***             3.934 ***                    3.994 ***                  9.499 ***                    9.273 ***           
##                               (0.051)                 (0.070)               (0.018)                      (0.021)                    (0.055)                      (0.082)              
## BM20.responsiblesourcing       0.032                   0.135 ***            -0.035 ***                   -0.055 ***                 -0.092 ***                   -0.127 ***           
##                               (0.017)                 (0.023)               (0.006)                      (0.007)                    (0.018)                      (0.027)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.078                   0.500                 0.426                        0.625                      0.373                        0.403               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -21942.217              -12184.716            -24583.388                   -13828.546                 -15297.566                   -12491.709               
## BIC                       -21923.365              -12168.114            -24564.537                   -13811.943                 -15278.714                   -12475.107               
## Num. obs.                    823                     469                   823                          469                        823                          469                   
## Num. groups: clus             35                      23                    35                           23                         35                           23                   
## Var: clus (Intercept)          0.037                   0.049                 0.005                        0.005                      0.044                        0.065               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

3.3 III check for cw1: Cross-level interaction of W

3.3.1 BM.responsiblesourcing

mentalhealth.BM.responsiblesourcing=lmer(mentalhealth~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BM.responsiblesourcing=lmer(stress~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM.responsiblesourcing=lmer(wage~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM.responsiblesourcing, stress.BM.responsiblesourcing, wage.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                        (1) mentalhealth  (2) stress    (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.203 ***         3.323 ***    224.175 ***
##                                          (0.204)           (0.308)       (14.910)   
## BM.responsiblesourcing                    0.059            -0.075          3.514    
##                                          (0.089)           (0.127)        (6.743)   
## migrant10                                 0.471             0.303         -0.493    
##                                          (0.318)           (0.326)       (13.732)   
## migrant10_mean                           -0.171            -0.707        -23.138    
##                                          (0.370)           (0.465)       (25.382)   
## BM.responsiblesourcing:migrant10         -0.189             0.180         -3.903    
##                                          (0.104)           (0.108)        (4.562)   
## BM.responsiblesourcing:migrant10_mean     0.002            -0.002          2.060    
##                                          (0.141)           (0.174)       (10.086)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.026             0.047          0.021    
## Conditional R^2                           0.224             0.092          0.381    
## AIC                                    2679.246          4040.290      11802.693    
## BIC                                    2727.468          4090.501      11852.796    
## Num. obs.                               918              1120           1108        
## Num. groups: clus                        49                49             49        
## Var: clus (Intercept)                     0.036             0.280        473.151    
## Var: clus migrant10                       0.547             0.420       1096.093    
## Cov: clus (Intercept) migrant10          -0.112            -0.338         37.356    
## Var: Residual                             0.964             2.035       2233.244    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

3.3.2 BM19.responsiblesourcing

mentalhealth.BM19.responsiblesourcing=lmer(mentalhealth~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BM19.responsiblesourcing=lmer(stress~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM19.responsiblesourcing=lmer(wage~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM19.responsiblesourcing, stress.BM19.responsiblesourcing, wage.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.167 ***         3.852 ***   230.417 ***
##                                            (0.250)           (0.360)      (19.074)   
## BM19.responsiblesourcing                    0.027            -0.249 *      -1.593    
##                                            (0.078)           (0.114)       (5.653)   
## migrant10                                   0.124             0.251         3.874    
##                                            (0.335)           (0.316)      (12.649)   
## migrant10_mean                              0.098            -1.036       -24.964    
##                                            (0.411)           (0.536)      (30.287)   
## BM19.responsiblesourcing:migrant10         -0.084             0.162        -4.218    
##                                            (0.105)           (0.098)       (3.968)   
## BM19.responsiblesourcing:migrant10_mean    -0.006             0.179         6.848    
##                                            (0.125)           (0.172)       (8.788)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.008             0.052         0.010    
## Conditional R^2                             0.240             0.089         0.365    
## AIC                                      1848.897          2728.782      7889.363    
## BIC                                      1893.480          2775.035      7935.537    
## Num. obs.                                 638               754           748        
## Num. groups: clus                          35                35            35        
## Var: clus (Intercept)                       0.038             0.132       270.071    
## Var: clus migrant10                         0.737             0.357       964.767    
## Cov: clus (Intercept) migrant10            -0.167            -0.217       178.383    
## Var: Residual                               0.925             2.042      2027.924    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

3.3.3 BM20.responsiblesourcing

mentalhealth.BM20.responsiblesourcing=lmer(mentalhealth~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BM20.responsiblesourcing=lmer(stress~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM20.responsiblesourcing=lmer(wage~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM20.responsiblesourcing, stress.BM20.responsiblesourcing, wage.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.303 ***         3.022 ***   217.620 ***
##                                            (0.182)           (0.248)      (12.932)   
## BM20.responsiblesourcing                    0.053            -0.029         9.386    
##                                            (0.089)           (0.109)       (6.932)   
## migrant10                                   0.200             0.730 *     -18.140    
##                                            (0.325)           (0.295)      (14.873)   
## migrant10_mean                             -0.184            -0.774         4.946    
##                                            (0.361)           (0.423)      (23.563)   
## BM20.responsiblesourcing:migrant10         -0.097             0.106         0.863    
##                                            (0.098)           (0.094)       (4.601)   
## BM20.responsiblesourcing:migrant10_mean    -0.036            -0.006       -12.944    
##                                            (0.145)           (0.155)      (10.611)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.016             0.065         0.040    
## Conditional R^2                             0.238             0.099         0.426    
## AIC                                      2003.898          3013.138      8811.311    
## BIC                                      2049.118          3060.424      8858.501    
## Num. obs.                                 680               836           828        
## Num. groups: clus                          37                37            37        
## Var: clus (Intercept)                       0.069             0.195       559.372    
## Var: clus migrant10                         0.654             0.255      1615.160    
## Cov: clus (Intercept) migrant10            -0.158            -0.214      -137.613    
## Var: Residual                               0.974             2.019      2204.179    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

4 B. 2nd ROUND DATA

data=dat[round == 2]
Freq(data$round)
## Frequency Statistics:
## ─────────────
##       N     %
## ─────────────
## 2  1666 100.0
## ─────────────
## Total N = 1,666

4.1 I check for cw2: Cross-level interaction of M

4.1.1 BA1920FOApractices

mentalhealth.BA1920FOApractices=lmer(mentalhealth~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920FOApractices=lmer(stress~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920FOApractices=lmer(wage~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920FOApractices, stress.BA1920FOApractices, wage.BA1920FOApractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                                    (1) mentalhealth  (2) stress  (3) wage    
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.098             1.576      413.814 **
##                                      (1.701)           (2.241)    (139.299)  
## BA1920FOApractices                    0.011             0.069       -9.525   
##                                      (0.086)           (0.114)      (7.056)  
## migrant10                             6.805 *          -2.863      168.134   
##                                      (2.750)           (2.522)    (106.767)  
## migrant10_mean                       -4.163             5.713     -171.472   
##                                      (3.615)           (4.487)    (269.104)  
## BA1920FOApractices:migrant10         -0.346 *           0.165       -8.226   
##                                      (0.141)           (0.130)      (5.491)  
## BA1920FOApractices:migrant10_mean     0.205            -0.286        7.941   
##                                      (0.183)           (0.228)     (13.612)  
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.012             0.017        0.027   
## Conditional R^2                       0.181             0.080        0.301   
## AIC                                3933.788          5455.984    16367.245   
## BIC                                3985.815          5509.521    16420.588   
## Num. obs.                          1343              1562         1532       
## Num. groups: clus                    66                69           69       
## Var: clus (Intercept)                 0.021             0.080      571.443   
## Var: clus migrant10                   0.388             0.283      722.993   
## Cov: clus (Intercept) migrant10      -0.055            -0.110     -126.059   
## Var: Residual                         0.999             1.812     2314.745   
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(stress.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(wage.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

4.1.2 BA20FOApractices

mentalhealth.BA20FOApractices=lmer(mentalhealth~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA20FOApractices=lmer(stress~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20FOApractices=lmer(wage~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20FOApractices, stress.BA20FOApractices, wage.BA20FOApractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────
##                                  (1) mentalhealth  (2) stress   (3) wage  
## ──────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.988 **         -1.538      401.116 *
##                                    (1.838)           (2.571)    (175.667) 
## BA20FOApractices                   -0.088             0.222       -9.124  
##                                    (0.092)           (0.130)      (8.849) 
## migrant10                          12.968 **         -3.315      329.746 *
##                                    (4.925)           (3.149)    (149.284) 
## migrant10_mean                    -11.243 *          15.740 **   -90.130  
##                                    (4.472)           (5.819)    (389.575) 
## BA20FOApractices:migrant10         -0.650 **          0.186      -16.013 *
##                                    (0.247)           (0.160)      (7.562) 
## BA20FOApractices:migrant10_mean     0.566 *          -0.784 **     4.577  
##                                    (0.224)           (0.292)     (19.527) 
## ──────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.028             0.031        0.057  
## Conditional R^2                     0.264             0.115        0.340  
## AIC                              2246.304          3191.888     9730.948  
## BIC                              2292.948          3240.186     9779.005  
## Num. obs.                         784               925          903      
## Num. groups: clus                  44                45           45      
## Var: clus (Intercept)               0.017             0.081      797.580  
## Var: clus migrant10                 0.601             0.341     1023.044  
## Cov: clus (Intercept) migrant10    -0.050            -0.106     -281.332  
## Var: Residual                       0.909             1.700     2525.619  
## ──────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(stress.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(wage.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

4.1.3 BA1920discriminate4prac

mentalhealth.BA1920discriminate4prac=lmer(mentalhealth~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920discriminate4prac=lmer(stress~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920discriminate4prac=lmer(wage~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920discriminate4prac, stress.BA1920discriminate4prac, wage.BA1920discriminate4prac))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress    (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.126             6.258 ***    692.821 ***
##                                           (1.789)           (1.798)      (118.860)   
## BA1920discriminate4prac                    0.552            -0.846       -118.079 ***
##                                           (0.452)           (0.457)       (30.097)   
## migrant10                                 -0.138            -0.909         28.823    
##                                           (1.326)           (1.138)       (48.367)   
## migrant10_mean                             2.834            -3.440       -630.601 ***
##                                           (2.834)           (2.750)      (177.370)   
## BA1920discriminate4prac:migrant10          0.045             0.330         -5.418    
##                                           (0.342)           (0.297)       (12.636)   
## BA1920discriminate4prac:migrant10_mean    -0.752             0.894        155.669 ***
##                                           (0.716)           (0.701)       (44.962)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.002             0.020          0.040    
## Conditional R^2                            0.186             0.081          0.298    
## AIC                                     3932.120          5447.841      16354.074    
## BIC                                     3984.147          5501.378      16407.417    
## Num. obs.                               1343              1562           1532        
## Num. groups: clus                         66                69             69        
## Var: clus (Intercept)                      0.031             0.069        404.152    
## Var: clus migrant10                        0.443             0.282        736.508    
## Cov: clus (Intercept) migrant10           -0.076            -0.105        -55.068    
## Var: Residual                              0.998             1.812       2318.477    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(stress.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(wage.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

4.1.4 BA20discriminate4prac

mentalhealth.BA20discriminate4prac=lmer(mentalhealth~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
## Error in lme4::lFormula(formula = mentalhealth ~ BA20discriminate4prac * : 0 (non-NA) cases
stress.BA20discriminate4prac=lmer(stress~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20discriminate4prac=lmer(wage~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20discriminate4prac, stress.BA20discriminate4prac, wage.BA20discriminate4prac))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress  (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.263             4.571      993.069 ***
##                                         (2.418)           (2.483)    (147.409)   
## BA20discriminate4prac                    0.495            -0.424     -194.485 ***
##                                         (0.608)           (0.628)     (37.207)   
## migrant10                                1.418            -0.465       65.784    
##                                         (2.429)           (1.550)     (71.786)   
## migrant10_mean                           0.851            -0.659    -1085.446 ***
##                                         (4.114)           (3.945)    (231.653)   
## BA20discriminate4prac:migrant10         -0.361             0.215      -13.659    
##                                         (0.619)           (0.403)     (18.658)   
## BA20discriminate4prac:migrant10_mean    -0.186             0.184      272.705 ***
##                                         (1.035)           (1.001)     (58.585)   
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.005             0.021        0.101    
## Conditional R^2                          0.271             0.118        0.317    
## AIC                                   2246.134          3191.183     9712.181    
## BIC                                   2292.778          3239.481     9760.238    
## Num. obs.                              784               925          903        
## Num. groups: clus                       44                45           45        
## Var: clus (Intercept)                    0.034             0.107      443.308    
## Var: clus migrant10                      0.757             0.396     1075.557    
## Cov: clus (Intercept) migrant10         -0.107            -0.134     -247.675    
## Var: Residual                            0.909             1.700     2536.001    
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(stress.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(wage.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

4.1.5 BA1920targetedpractices

mentalhealth.BA1920targetedpractices=lmer(mentalhealth~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920targetedpractices=lmer(stress~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920targetedpractices=lmer(wage~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920targetedpractices, stress.BA1920targetedpractices, wage.BA1920targetedpractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress    (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.592             4.995 ***    535.594 ***
##                                           (1.359)           (1.312)       (86.763)   
## BA1920targetedpractices                    0.176            -0.210        -31.706 ***
##                                           (0.138)           (0.135)        (8.872)   
## migrant10                                  1.267             0.240        114.461 ** 
##                                           (1.285)           (1.067)       (42.491)   
## migrant10_mean                             1.524            -3.781       -438.847 ** 
##                                           (2.422)           (2.271)      (144.214)   
## BA1920targetedpractices:migrant10         -0.133             0.011        -11.582 *  
##                                           (0.137)           (0.115)        (4.596)   
## BA1920targetedpractices:migrant10_mean    -0.166             0.401         43.459 ** 
##                                           (0.249)           (0.236)       (14.848)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.006             0.020          0.061    
## Conditional R^2                            0.188             0.082          0.287    
## AIC                                     3936.054          5454.658      16353.288    
## BIC                                     3988.081          5508.195      16406.631    
## Num. obs.                               1343              1562           1532        
## Num. groups: clus                         66                69             69        
## Var: clus (Intercept)                      0.023             0.070        410.273    
## Var: clus migrant10                        0.444             0.302        594.765    
## Cov: clus (Intercept) migrant10           -0.072            -0.114        -70.217    
## Var: Residual                              0.998             1.812       2320.937    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(stress.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(wage.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

4.1.6 BA20targetedpractices

mentalhealth.BA20targetedpractices=lmer(mentalhealth~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
## Error in lme4::lFormula(formula = mentalhealth ~ BA20targetedpractices * : 0 (non-NA) cases
stress.BA20targetedpractices=lmer(stress~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20targetedpractices=lmer(wage~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20targetedpractices, stress.BA20targetedpractices, wage.BA20targetedpractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress   (3) wage    
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.035             4.404 **   586.350 ***
##                                         (1.429)           (1.564)    (103.082)   
## BA20targetedpractices                    0.122            -0.153      -37.311 ***
##                                         (0.145)           (0.161)     (10.541)   
## migrant10                                0.725             0.769      131.023 *  
##                                         (1.710)           (1.220)     (52.145)   
## migrant10_mean                           0.142            -3.376     -540.532 ** 
##                                         (2.647)           (2.831)    (180.213)   
## BA20targetedpractices:migrant10         -0.078            -0.046      -13.069 *  
##                                         (0.185)           (0.134)      (5.747)   
## BA20targetedpractices:migrant10_mean     0.005             0.366       55.115 ** 
##                                         (0.273)           (0.295)     (18.702)   
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.008             0.022        0.088    
## Conditional R^2                          0.275             0.123        0.324    
## AIC                                   2252.242          3198.376     9722.335    
## BIC                                   2298.886          3246.674     9770.392    
## Num. obs.                              784               925          903        
## Num. groups: clus                       44                45           45        
## Var: clus (Intercept)                    0.027             0.099      549.614    
## Var: clus migrant10                      0.785             0.426      887.540    
## Cov: clus (Intercept) migrant10         -0.111            -0.135     -172.272    
## Var: Residual                            0.909             1.699     2533.865    
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(stress.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(wage.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

4.2 II check for ab2: Main effect of M on W (Mplus approach)

4.2.1 BM.responsiblesourcing

BA1920FOApractices.BM.responsiblesourcing=lmer(BA1920FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM.responsiblesourcing=lmer(BA20FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM.responsiblesourcing=lmer(BA1920discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM.responsiblesourcing=lmer(BA20discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM.responsiblesourcing=lmer(BA1920targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM.responsiblesourcing=lmer(BA20targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM.responsiblesourcing, BA20FOApractices.BM.responsiblesourcing, BA1920discriminate4prac.BM.responsiblesourcing, BA20discriminate4prac.BM.responsiblesourcing, BA1920targetedpractices.BM.responsiblesourcing, BA20targetedpractices.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                         (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 19.269 ***              18.914 ***             3.791 ***                    3.803 ***                  9.107 ***                    8.937 ***           
##                             (0.056)                 (0.063)               (0.024)                      (0.025)                    (0.060)                      (0.081)              
## BM.responsiblesourcing       0.131 ***               0.337 ***             0.026 **                     0.030 ***                  0.090 ***                    0.096 ***           
##                             (0.019)                 (0.023)               (0.008)                      (0.009)                    (0.021)                      (0.029)              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.492                   0.876                 0.189                        0.273                      0.281                        0.260               
## Conditional R^2              1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                     -27110.283              -12455.622            -30284.873                   -13718.358                 -27600.067                   -17451.794               
## BIC                     -27090.515              -12437.665            -30265.104                   -13700.401                 -27580.298                   -17433.837               
## Num. obs.                 1035                     658                  1035                          658                       1035                          658                   
## Num. groups: clus           47                      32                    47                           32                         47                           32                   
## Var: clus (Intercept)        0.036                   0.035                 0.006                        0.005                      0.042                        0.057               
## Var: Residual                0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

4.2.2 BM19.responsiblesourcing

BA1920FOApractices.BM19.responsiblesourcing=lmer(BA1920FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM19.responsiblesourcing=lmer(BA20FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM19.responsiblesourcing=lmer(BA1920discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM19.responsiblesourcing=lmer(BA20discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM19.responsiblesourcing=lmer(BA1920targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM19.responsiblesourcing=lmer(BA20targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM19.responsiblesourcing, BA20FOApractices.BM19.responsiblesourcing, BA1920discriminate4prac.BM19.responsiblesourcing, BA20discriminate4prac.BM19.responsiblesourcing, BA1920targetedpractices.BM19.responsiblesourcing, BA20targetedpractices.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.199 ***              19.197 ***             3.559 ***                    3.548 ***                  8.491 ***                    8.370 ***           
##                               (0.059)                 (0.065)               (0.022)                      (0.024)                    (0.066)                      (0.079)              
## BM19.responsiblesourcing       0.162 ***               0.212 ***             0.101 ***                    0.109 ***                  0.292 ***                    0.284 ***           
##                               (0.019)                 (0.020)               (0.007)                      (0.008)                    (0.021)                      (0.025)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.690                   0.802                 0.855                        0.889                      0.849                        0.832               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -19787.008              -14859.024            -21835.933                   -16463.277                 -20336.386                   -10386.666               
## BIC                       -19768.581              -14841.777            -21817.506                   -16446.030                 -20317.959                   -10369.419               
## Num. obs.                    740                     551                   740                          551                        740                          551                   
## Num. groups: clus             34                      25                    34                           25                         34                           25                   
## Var: clus (Intercept)          0.035                   0.033                 0.005                        0.004                      0.045                        0.048               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

4.2.3 BM20.responsiblesourcing

BA1920FOApractices.BM20.responsiblesourcing=lmer(BA1920FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM20.responsiblesourcing=lmer(BA20FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM20.responsiblesourcing=lmer(BA1920discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM20.responsiblesourcing=lmer(BA20discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM20.responsiblesourcing=lmer(BA1920targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM20.responsiblesourcing=lmer(BA20targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM20.responsiblesourcing, BA20FOApractices.BM20.responsiblesourcing, BA1920discriminate4prac.BM20.responsiblesourcing, BA20discriminate4prac.BM20.responsiblesourcing, BA1920targetedpractices.BM20.responsiblesourcing, BA20targetedpractices.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.454 ***              19.577 ***             3.953 ***                    3.988 ***                  9.366 ***                    9.156 ***           
##                               (0.053)                 (0.072)               (0.019)                      (0.021)                    (0.059)                      (0.081)              
## BM20.responsiblesourcing       0.001                   0.104 ***            -0.041 ***                   -0.059 ***                 -0.026                       -0.101 ***           
##                               (0.018)                 (0.024)               (0.006)                      (0.007)                    (0.019)                      (0.026)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.000                   0.373                 0.487                        0.659                      0.039                        0.300               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -19838.997              -11811.698            -15676.199                   -13301.244                 -20214.064                   -12217.441               
## BIC                       -19820.490              -11795.279            -15657.692                   -13284.825                 -20195.558                   -12201.022               
## Num. obs.                    755                     448                   755                          448                        755                          448                   
## Num. groups: clus             35                      23                    35                           23                         35                           23                   
## Var: clus (Intercept)          0.041                   0.052                 0.005                        0.005                      0.049                        0.068               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

4.3 III check for cw1: Cross-level interaction of W

4.3.1 BM.responsiblesourcing

mentalhealth.BM.responsiblesourcing=lmer(mentalhealth~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM.responsiblesourcing=lmer(stress~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM.responsiblesourcing=lmer(wage~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM.responsiblesourcing, stress.BM.responsiblesourcing, wage.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                        (1) mentalhealth  (2) stress    (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.203 ***         3.132 ***    217.909 ***
##                                          (0.204)           (0.254)       (14.289)   
## BM.responsiblesourcing                    0.059            -0.145          1.636    
##                                          (0.089)           (0.113)        (6.789)   
## migrant10                                 0.471             0.140          1.157    
##                                          (0.318)           (0.327)       (11.547)   
## migrant10_mean                           -0.171             0.121          6.605    
##                                          (0.370)           (0.456)       (25.055)   
## BM.responsiblesourcing:migrant10         -0.189             0.086          2.283    
##                                          (0.104)           (0.111)        (3.890)   
## BM.responsiblesourcing:migrant10_mean     0.002             0.080         -4.202    
##                                          (0.141)           (0.178)       (10.220)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.026             0.024          0.003    
## Conditional R^2                           0.224             0.103          0.344    
## AIC                                    2679.246          3809.491      11357.598    
## BIC                                    2727.468          3859.403      11407.296    
## Num. obs.                               918              1087           1064        
## Num. groups: clus                        49                51             51        
## Var: clus (Intercept)                     0.036             0.125        468.326    
## Var: clus migrant10                       0.547             0.505        606.493    
## Cov: clus (Intercept) migrant10          -0.112            -0.228        218.227    
## Var: Residual                             0.964             1.803       2292.253    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

4.3.2 BM19.responsiblesourcing

mentalhealth.BM19.responsiblesourcing=lmer(mentalhealth~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM19.responsiblesourcing=lmer(stress~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM19.responsiblesourcing=lmer(wage~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM19.responsiblesourcing, stress.BM19.responsiblesourcing, wage.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.167 ***         3.359 ***   290.961 ***
##                                            (0.250)           (0.328)      (18.305)   
## BM19.responsiblesourcing                    0.027            -0.178       -20.587 ***
##                                            (0.078)           (0.105)       (5.769)   
## migrant10                                   0.124             0.266        13.041    
##                                            (0.335)           (0.306)      (11.864)   
## migrant10_mean                              0.098            -0.406      -104.823 ***
##                                            (0.411)           (0.525)      (29.407)   
## BM19.responsiblesourcing:migrant10         -0.084             0.007        -1.549    
##                                            (0.105)           (0.096)       (3.765)   
## BM19.responsiblesourcing:migrant10_mean    -0.006             0.237        28.513 ** 
##                                            (0.125)           (0.162)       (8.930)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.008             0.022         0.044    
## Conditional R^2                             0.240             0.099         0.268    
## AIC                                      1848.897          2725.104      8179.782    
## BIC                                      1893.480          2771.671      8226.142    
## Num. obs.                                 638               778           762        
## Num. groups: clus                          35                37            37        
## Var: clus (Intercept)                       0.038             0.098       276.851    
## Var: clus migrant10                         0.737             0.466       732.151    
## Cov: clus (Intercept) migrant10            -0.167            -0.192        -4.224    
## Var: Residual                               0.925             1.783      2493.005    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

4.3.3 BM20.responsiblesourcing

mentalhealth.BM20.responsiblesourcing=lmer(mentalhealth~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM20.responsiblesourcing=lmer(stress~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM20.responsiblesourcing=lmer(wage~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM20.responsiblesourcing, stress.BM20.responsiblesourcing, wage.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.303 ***         2.947 ***   202.647 ***
##                                            (0.182)           (0.230)      (12.985)   
## BM20.responsiblesourcing                    0.053            -0.082        11.009    
##                                            (0.089)           (0.110)       (7.155)   
## migrant10                                   0.200             0.035        -6.286    
##                                            (0.325)           (0.318)      (10.908)   
## migrant10_mean                             -0.184             0.362        33.418    
##                                            (0.361)           (0.437)      (24.249)   
## BM20.responsiblesourcing:migrant10         -0.097             0.131         3.246    
##                                            (0.098)           (0.099)       (3.399)   
## BM20.responsiblesourcing:migrant10_mean    -0.036            -0.024       -17.461    
##                                            (0.145)           (0.176)      (11.082)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.016             0.027         0.014    
## Conditional R^2                             0.238             0.105         0.373    
## AIC                                      2003.898          2731.592      8098.654    
## BIC                                      2049.118          2778.146      8144.974    
## Num. obs.                                 680               777           759        
## Num. groups: clus                          37                37            37        
## Var: clus (Intercept)                       0.069             0.154       546.412    
## Var: clus migrant10                         0.654             0.463       444.378    
## Cov: clus (Intercept) migrant10            -0.158            -0.231       345.736    
## Var: Residual                               0.974             1.802      2303.042    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

5 C. 1ST ROUND DATA

data=dat[round == 1]
Freq(data$round)
## Frequency Statistics:
## ─────────────
##       N     %
## ─────────────
## 1  1730 100.0
## ─────────────
## Total N = 1,730

5.1 I check for cw2: Cross-level interaction of M

5.1.1 BA1920FOApractices

mentalhealth.BA1920FOApractices=lmer(mentalhealth~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920FOApractices=lmer(stress~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920FOApractices=lmer(wage~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920FOApractices, stress.BA1920FOApractices, wage.BA1920FOApractices))
## 
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                                    (1) mentalhealth  (2) stress  (3) wage  
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.098             1.314      267.417 
##                                      (1.701)           (1.979)    (158.601)
## BA1920FOApractices                    0.011             0.082       -2.188 
##                                      (0.086)           (0.100)      (8.022)
## migrant10                             6.805 *          -0.281      208.556 
##                                      (2.750)           (2.155)    (137.299)
## migrant10_mean                       -4.163             5.817      -94.072 
##                                      (3.615)           (3.985)    (306.881)
## BA1920FOApractices:migrant10         -0.346 *           0.033      -10.381 
##                                      (0.141)           (0.111)      (7.063)
## BA1920FOApractices:migrant10_mean     0.205            -0.292        4.530 
##                                      (0.183)           (0.202)     (15.503)
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.012             0.016        0.008 
## Conditional R^2                       0.181             0.057        0.355 
## AIC                                3933.788          5628.459    17482.631 
## BIC                                3985.815          5682.292    17536.340 
## Num. obs.                          1343              1609         1589     
## Num. groups: clus                    66                69           69     
## Var: clus (Intercept)                 0.021             0.000      682.012 
## Var: clus migrant10                   0.388             0.113     1579.610 
## Cov: clus (Intercept) migrant10      -0.055             0.000      -67.098 
## Var: Residual                         0.999             1.850     3163.435 
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(stress.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(wage.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

5.1.2 BA20FOApractices

mentalhealth.BA20FOApractices=lmer(mentalhealth~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA20FOApractices=lmer(stress~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20FOApractices=lmer(wage~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20FOApractices, stress.BA20FOApractices, wage.BA20FOApractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────
##                                  (1) mentalhealth  (2) stress   (3) wage  
## ──────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.988 **         -1.413       217.005 
##                                    (1.838)           (2.274)     (204.346)
## BA20FOApractices                   -0.088             0.217         0.338 
##                                    (0.092)           (0.114)      (10.284)
## migrant10                          12.968 **          0.421       310.607 
##                                    (4.925)           (2.782)     (196.096)
## migrant10_mean                    -11.243 *          13.676 **     34.888 
##                                    (4.472)           (5.099)     (451.706)
## BA20FOApractices:migrant10         -0.650 **         -0.004       -15.006 
##                                    (0.247)           (0.141)       (9.951)
## BA20FOApractices:migrant10_mean     0.566 *          -0.682 **     -1.713 
##                                    (0.224)           (0.255)      (22.621)
## ──────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.028             0.031         0.023 
## Conditional R^2                     0.264             0.096         0.444 
## AIC                              2246.304          3232.937     10104.729 
## BIC                              2292.948          3281.278     10152.973 
## Num. obs.                         784               929           920     
## Num. groups: clus                  44                45            45     
## Var: clus (Intercept)               0.017             0.000      1075.020 
## Var: clus migrant10                 0.601             0.213      2518.624 
## Cov: clus (Intercept) migrant10    -0.050             0.000      -242.195 
## Var: Residual                       0.909             1.778      3032.511 
## ──────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(stress.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(wage.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

5.1.3 BA1920discriminate4prac

mentalhealth.BA1920discriminate4prac=lmer(mentalhealth~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920discriminate4prac=lmer(stress~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920discriminate4prac=lmer(wage~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920discriminate4prac, stress.BA1920discriminate4prac, wage.BA1920discriminate4prac))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress   (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.126             4.973 **    760.172 ***
##                                           (1.789)           (1.720)     (131.560)   
## BA1920discriminate4prac                    0.552            -0.513      -135.501 ***
##                                           (0.452)           (0.436)      (33.330)   
## migrant10                                 -0.138             0.483        92.752    
##                                           (1.326)           (1.027)      (67.572)   
## migrant10_mean                             2.834            -2.427      -754.546 ***
##                                           (2.834)           (2.698)     (196.729)   
## BA1920discriminate4prac:migrant10          0.045            -0.033       -22.479    
##                                           (0.342)           (0.268)      (17.622)   
## BA1920discriminate4prac:migrant10_mean    -0.752             0.621       189.133 ***
##                                           (0.716)           (0.685)      (49.894)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.002             0.015         0.037    
## Conditional R^2                            0.186             0.058         0.315    
## AIC                                     3932.120          5623.560     17464.235    
## BIC                                     3984.147          5677.394     17517.943    
## Num. obs.                               1343              1609          1589        
## Num. groups: clus                         66                69            69        
## Var: clus (Intercept)                      0.031             0.000       547.510    
## Var: clus migrant10                        0.443             0.119      1771.729    
## Cov: clus (Intercept) migrant10           -0.076             0.000      -361.182    
## Var: Residual                              0.998             1.850      3169.321    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(stress.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(wage.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

5.1.4 BA20discriminate4prac

mentalhealth.BA20discriminate4prac=lmer(mentalhealth~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
## Error in lme4::lFormula(formula = mentalhealth ~ BA20discriminate4prac * : 0 (non-NA) cases
stress.BA20discriminate4prac=lmer(stress~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20discriminate4prac=lmer(wage~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20discriminate4prac, stress.BA20discriminate4prac, wage.BA20discriminate4prac))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress  (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.263             5.075 *   1049.158 ***
##                                         (2.418)           (2.203)    (175.080)   
## BA20discriminate4prac                    0.495            -0.539     -208.172 ***
##                                         (0.608)           (0.556)     (44.227)   
## migrant10                                1.418            -0.082       84.396    
##                                         (2.429)           (1.385)    (107.744)   
## migrant10_mean                           0.851            -2.757    -1248.310 ***
##                                         (4.114)           (3.635)    (271.730)   
## BA20discriminate4prac:migrant10         -0.361             0.114      -18.510    
##                                         (0.619)           (0.360)     (27.972)   
## BA20discriminate4prac:migrant10_mean    -0.186             0.699      314.938 ***
##                                         (1.035)           (0.920)     (68.779)   
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.005             0.017        0.080    
## Conditional R^2                          0.271             0.084        0.392    
## AIC                                   2246.134          3234.136    10085.865    
## BIC                                   2292.778          3282.477    10134.109    
## Num. obs.                              784               929          920        
## Num. groups: clus                       44                45           45        
## Var: clus (Intercept)                    0.034             0.000      851.356    
## Var: clus migrant10                      0.757             0.217     3080.865    
## Cov: clus (Intercept) migrant10         -0.107             0.000     -952.715    
## Var: Residual                            0.909             1.792     3039.760    
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(stress.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(wage.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

5.1.5 BA1920targetedpractices

mentalhealth.BA1920targetedpractices=lmer(mentalhealth~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920targetedpractices=lmer(stress~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920targetedpractices=lmer(wage~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920targetedpractices, stress.BA1920targetedpractices, wage.BA1920targetedpractices))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress   (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.592             3.727 **    578.070 ***
##                                           (1.359)           (1.265)      (94.211)   
## BA1920targetedpractices                    0.176            -0.080       -36.327 ***
##                                           (0.138)           (0.130)       (9.645)   
## migrant10                                  1.267             1.430       248.342 ***
##                                           (1.285)           (0.924)      (53.856)   
## migrant10_mean                             1.524            -1.222      -546.099 ***
##                                           (2.422)           (2.244)     (155.992)   
## BA1920targetedpractices:migrant10         -0.133            -0.116       -26.255 ***
##                                           (0.137)           (0.100)       (5.814)   
## BA1920targetedpractices:migrant10_mean    -0.166             0.132        55.680 ***
##                                           (0.249)           (0.232)      (16.072)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.006             0.016         0.092    
## Conditional R^2                            0.188             0.054         0.291    
## AIC                                     3936.054          5628.616     17450.029    
## BIC                                     3988.081          5682.450     17503.738    
## Num. obs.                               1343              1609          1589        
## Num. groups: clus                         66                69            69        
## Var: clus (Intercept)                      0.023             0.000       534.936    
## Var: clus migrant10                        0.444             0.105      1140.940    
## Cov: clus (Intercept) migrant10           -0.072             0.000      -316.777    
## Var: Residual                              0.998             1.853      3171.483    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(stress.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(wage.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

5.1.6 BA20targetedpractices

mentalhealth.BA20targetedpractices=lmer(mentalhealth~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
## Error in lme4::lFormula(formula = mentalhealth ~ BA20targetedpractices * : 0 (non-NA) cases
stress.BA20targetedpractices=lmer(stress~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20targetedpractices=lmer(wage~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20targetedpractices, stress.BA20targetedpractices, wage.BA20targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress   (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.035             3.842 **    589.596 ***
##                                         (1.429)           (1.412)     (115.813)   
## BA20targetedpractices                    0.122            -0.093       -37.449 ** 
##                                         (0.145)           (0.144)      (11.873)   
## migrant10                                0.725             1.265       269.764 ***
##                                         (1.710)           (1.063)      (68.005)   
## migrant10_mean                           0.142            -1.244      -602.852 ** 
##                                         (2.647)           (2.651)     (198.921)   
## BA20targetedpractices:migrant10         -0.078            -0.101       -28.524 ***
##                                         (0.185)           (0.117)       (7.503)   
## BA20targetedpractices:migrant10_mean     0.005             0.131        62.226 ** 
##                                         (0.273)           (0.275)      (20.693)   
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.008             0.019         0.124    
## Conditional R^2                          0.275             0.082         0.376    
## AIC                                   2252.242          3240.166     10084.446    
## BIC                                   2298.886          3288.508     10132.690    
## Num. obs.                              784               929           920        
## Num. groups: clus                       44                45            45        
## Var: clus (Intercept)                    0.027             0.000       895.483    
## Var: clus migrant10                      0.785             0.207      1907.209    
## Cov: clus (Intercept) migrant10         -0.111             0.000      -679.235    
## Var: Residual                            0.909             1.792      3041.021    
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(stress.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(wage.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

5.2 II check for ab2: Main effect of M on W (Mplus approach)

5.2.1 BM.responsiblesourcing

BA1920FOApractices.BM.responsiblesourcing=lmer(BA1920FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM.responsiblesourcing=lmer(BA20FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM.responsiblesourcing=lmer(BA1920discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM.responsiblesourcing=lmer(BA20discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM.responsiblesourcing=lmer(BA1920targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM.responsiblesourcing=lmer(BA20targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM.responsiblesourcing, BA20FOApractices.BM.responsiblesourcing, BA1920discriminate4prac.BM.responsiblesourcing, BA20discriminate4prac.BM.responsiblesourcing, BA1920targetedpractices.BM.responsiblesourcing, BA20targetedpractices.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                         (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 19.186 ***              18.936 ***             3.768 ***                    3.803 ***                  8.860 ***                    8.943 ***           
##                             (0.054)                 (0.065)               (0.021)                      (0.025)                    (0.060)                      (0.080)              
## BM.responsiblesourcing       0.139 ***               0.341 ***             0.032 ***                    0.030 ***                  0.173 ***                    0.071 *             
##                             (0.019)                 (0.023)               (0.007)                      (0.009)                    (0.021)                      (0.028)              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.555                   0.885                 0.288                        0.285                      0.616                        0.171               
## Conditional R^2              1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                     -27133.512              -16193.084            -30248.954                   -13279.621                 -27219.031                   -16428.314               
## BIC                     -27113.739              -16175.320            -30229.181                   -13261.857                 -27199.259                   -16410.550               
## Num. obs.                 1036                     627                  1036                          627                       1036                          627                   
## Num. groups: clus           47                      32                    47                           32                         47                           32                   
## Var: clus (Intercept)        0.035                   0.036                 0.006                        0.006                      0.043                        0.059               
## Var: Residual                0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

5.2.2 BM19.responsiblesourcing

BA1920FOApractices.BM19.responsiblesourcing=lmer(BA1920FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM19.responsiblesourcing=lmer(BA20FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM19.responsiblesourcing=lmer(BA1920discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM19.responsiblesourcing=lmer(BA20discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM19.responsiblesourcing=lmer(BA1920targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM19.responsiblesourcing=lmer(BA20targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM19.responsiblesourcing, BA20FOApractices.BM19.responsiblesourcing, BA1920discriminate4prac.BM19.responsiblesourcing, BA20discriminate4prac.BM19.responsiblesourcing, BA1920targetedpractices.BM19.responsiblesourcing, BA20targetedpractices.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.080 ***              19.195 ***             3.562 ***                    3.514 ***                  8.644 ***                    8.390 ***           
##                               (0.059)                 (0.067)               (0.023)                      (0.027)                    (0.067)                      (0.079)              
## BM19.responsiblesourcing       0.186 ***               0.199 ***             0.099 ***                    0.123 ***                  0.232 ***                    0.293 ***           
##                               (0.018)                 (0.021)               (0.007)                      (0.009)                    (0.021)                      (0.025)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.750                   0.788                 0.853                        0.913                      0.786                        0.846               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -18856.323              -10257.360            -21026.178                   -15764.125                 -12960.261                   -14273.753               
## BIC                       -18838.074              -10240.284            -21007.928                   -15747.049                 -12942.011                   -14256.677               
## Num. obs.                    708                     528                   708                          528                        708                          528                   
## Num. groups: clus             34                      25                    34                           25                         34                           25                   
## Var: clus (Intercept)          0.036                   0.034                 0.005                        0.005                      0.047                        0.050               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

5.2.3 BM20.responsiblesourcing

BA1920FOApractices.BM20.responsiblesourcing=lmer(BA1920FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM20.responsiblesourcing=lmer(BA20FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM20.responsiblesourcing=lmer(BA1920discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM20.responsiblesourcing=lmer(BA20discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM20.responsiblesourcing=lmer(BA1920targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM20.responsiblesourcing=lmer(BA20targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM20.responsiblesourcing, BA20FOApractices.BM20.responsiblesourcing, BA1920discriminate4prac.BM20.responsiblesourcing, BA20discriminate4prac.BM20.responsiblesourcing, BA1920targetedpractices.BM20.responsiblesourcing, BA20targetedpractices.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.505 ***              19.501 ***             3.960 ***                    3.982 ***                  9.499 ***                    9.325 ***           
##                               (0.053)                 (0.074)               (0.019)                      (0.024)                    (0.057)                      (0.084)              
## BM20.responsiblesourcing       0.018                   0.120 ***            -0.040 ***                   -0.059 ***                 -0.092 ***                   -0.138 ***           
##                               (0.018)                 (0.024)               (0.007)                      (0.008)                    (0.019)                      (0.028)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.023                   0.431                 0.476                        0.648                      0.353                        0.434               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -19790.401              -11125.324            -22640.193                   -12887.404                 -14444.461                   -11066.676               
## BIC                       -19771.863              -11109.106            -22621.654                   -12871.186                 -14425.923                   -11050.458               
## Num. obs.                    761                     426                   761                          426                        761                          426                   
## Num. groups: clus             35                      23                    35                           23                         35                           23                   
## Var: clus (Intercept)          0.040                   0.054                 0.005                        0.005                      0.047                        0.071               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

5.3 III check for cw1: Cross-level interaction of W

5.3.1 BM.responsiblesourcing

mentalhealth.BM.responsiblesourcing=lmer(mentalhealth~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM.responsiblesourcing=lmer(stress~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM.responsiblesourcing=lmer(wage~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM.responsiblesourcing, stress.BM.responsiblesourcing, wage.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                        (1) mentalhealth  (2) stress    (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.203 ***         2.899 ***    207.784 ***
##                                          (0.204)           (0.223)       (18.659)   
## BM.responsiblesourcing                    0.059            -0.049          9.289    
##                                          (0.089)           (0.100)        (8.656)   
## migrant10                                 0.471             0.391         14.378    
##                                          (0.318)           (0.247)       (16.031)   
## migrant10_mean                           -0.171             0.022         17.580    
##                                          (0.370)           (0.394)       (31.150)   
## BM.responsiblesourcing:migrant10         -0.189             0.003         -1.477    
##                                          (0.104)           (0.082)        (5.498)   
## BM.responsiblesourcing:migrant10_mean     0.002             0.045        -13.025    
##                                          (0.141)           (0.155)       (12.769)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.026             0.022          0.010    
## Conditional R^2                           0.224             0.067          0.390    
## AIC                                    2679.246          3771.629      11720.637    
## BIC                                    2727.468          3821.504      11770.391    
## Num. obs.                               918              1083           1070        
## Num. groups: clus                        49                51             51        
## Var: clus (Intercept)                     0.036             0.000        935.882    
## Var: clus migrant10                       0.547             0.129       1852.083    
## Cov: clus (Intercept) migrant10          -0.112             0.000       -249.933    
## Var: Residual                             0.964             1.799       2973.152    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

5.3.2 BM19.responsiblesourcing

mentalhealth.BM19.responsiblesourcing=lmer(mentalhealth~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM19.responsiblesourcing=lmer(stress~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM19.responsiblesourcing=lmer(wage~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM19.responsiblesourcing, stress.BM19.responsiblesourcing, wage.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.167 ***         2.973 ***   234.393 ***
##                                            (0.250)           (0.291)      (30.742)   
## BM19.responsiblesourcing                    0.027            -0.071        -2.181    
##                                            (0.078)           (0.090)       (9.434)   
## migrant10                                   0.124             0.474 *      -7.885    
##                                            (0.335)           (0.241)      (14.975)   
## migrant10_mean                              0.098            -0.320        -5.253    
##                                            (0.411)           (0.488)      (47.744)   
## BM19.responsiblesourcing:migrant10         -0.084            -0.025         8.276    
##                                            (0.105)           (0.075)       (4.865)   
## BM19.responsiblesourcing:migrant10_mean    -0.006             0.157        -3.394    
##                                            (0.125)           (0.149)      (14.320)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.008             0.028         0.015    
## Conditional R^2                             0.240             0.066         0.506    
## AIC                                      1848.897          2584.904      7914.924    
## BIC                                      1893.480          2631.038      7960.936    
## Num. obs.                                 638               745           736        
## Num. groups: clus                          35                37            37        
## Var: clus (Intercept)                       0.038             0.000      1110.819    
## Var: clus migrant10                         0.737             0.112      1677.746    
## Cov: clus (Intercept) migrant10            -0.167             0.000       149.512    
## Var: Residual                               0.925             1.757      2388.354    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

5.3.3 BM20.responsiblesourcing

mentalhealth.BM20.responsiblesourcing=lmer(mentalhealth~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM20.responsiblesourcing=lmer(stress~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM20.responsiblesourcing=lmer(wage~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM20.responsiblesourcing, stress.BM20.responsiblesourcing, wage.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.303 ***         2.763 ***   209.540 ***
##                                            (0.182)           (0.188)      (18.534)   
## BM20.responsiblesourcing                    0.053             0.025        12.321    
##                                            (0.089)           (0.097)       (9.891)   
## migrant10                                   0.200             0.330        42.918 ** 
##                                            (0.325)           (0.281)      (16.157)   
## migrant10_mean                             -0.184             0.359         3.785    
##                                            (0.361)           (0.397)      (33.215)   
## BM20.responsiblesourcing:migrant10         -0.097             0.014       -10.323 *  
##                                            (0.098)           (0.088)       (5.012)   
## BM20.responsiblesourcing:migrant10_mean    -0.036            -0.112       -13.505    
##                                            (0.145)           (0.165)      (15.001)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.016             0.023         0.045    
## Conditional R^2                             0.238             0.097         0.410    
## AIC                                      2003.898          2722.512      8503.432    
## BIC                                      2049.118          2769.079      8549.883    
## Num. obs.                                 680               778           769        
## Num. groups: clus                          37                37            37        
## Var: clus (Intercept)                       0.069             0.000      1297.561    
## Var: clus migrant10                         0.654             0.219      1540.307    
## Cov: clus (Intercept) migrant10            -0.158             0.000      -197.841    
## Var: Residual                               0.974             1.794      3335.964    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

6 D. 3&2 ROUND DATA

data=dat[round != 1]
Freq(data$round)
## Frequency Statistics:
## ────────────
##       N    %
## ────────────
## 2  1666 48.7
## 3  1756 51.3
## ────────────
## Total N = 3,422

6.1 I check for cw2: Cross-level interaction of M

6.1.1 BA1920FOApractices

mentalhealth.BA1920FOApractices=lmer(mentalhealth~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920FOApractices=lmer(stress~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920FOApractices=lmer(wage~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920FOApractices, stress.BA1920FOApractices, wage.BA1920FOApractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                                    (1) mentalhealth  (2) stress  (3) wage    
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.098              2.280     395.665 **
##                                      (1.701)            (1.911)   (125.182)  
## BA1920FOApractices                    0.011              0.034      -8.347   
##                                      (0.086)            (0.097)     (6.347)  
## migrant10                             6.805 *           -2.657     213.942 * 
##                                      (2.750)            (1.722)    (96.474)  
## migrant10_mean                       -4.163              3.681    -324.562   
##                                      (3.615)            (3.489)   (239.204)  
## BA1920FOApractices:migrant10         -0.346 *            0.162     -11.207 * 
##                                      (0.141)            (0.089)     (4.961)  
## BA1920FOApractices:migrant10_mean     0.205             -0.193      15.607   
##                                      (0.183)            (0.177)    (12.102)  
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.012              0.023       0.025   
## Conditional R^2                       0.181              0.046       0.265   
## AIC                                3933.788          11522.959   34368.052   
## BIC                                3985.815          11583.830   34428.751   
## Num. obs.                          1343               3252        3197       
## Num. groups: clus                    66                 69          69       
## Var: clus (Intercept)                 0.021              0.113     545.654   
## Var: clus migrant10                   0.388              0.109     788.818   
## Cov: clus (Intercept) migrant10      -0.055             -0.099    -193.854   
## Var: Residual                         0.999              1.969    2562.079   
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(stress.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(wage.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

6.1.2 BA20FOApractices

mentalhealth.BA20FOApractices=lmer(mentalhealth~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA20FOApractices=lmer(stress~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20FOApractices=lmer(wage~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20FOApractices, stress.BA20FOApractices, wage.BA20FOApractices))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────
##                                  (1) mentalhealth  (2) stress   (3) wage    
## ────────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.988 **          0.250       375.453 * 
##                                    (1.838)           (2.222)     (154.602)  
## BA20FOApractices                   -0.088             0.131        -7.432   
##                                    (0.092)           (0.112)       (7.794)  
## migrant10                          12.968 **         -5.354 *     334.453 **
##                                    (4.925)           (2.212)     (129.744)  
## migrant10_mean                    -11.243 *          12.177 *    -249.762   
##                                    (4.472)           (4.777)     (343.684)  
## BA20FOApractices:migrant10         -0.650 **          0.297 **    -16.902 * 
##                                    (0.247)           (0.112)       (6.573)  
## BA20FOApractices:migrant10_mean     0.566 *          -0.612 *      12.094   
##                                    (0.224)           (0.240)      (17.229)  
## ────────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.028             0.040         0.037   
## Conditional R^2                     0.264             0.078         0.312   
## AIC                              2246.304          6664.082     19962.846   
## BIC                              2292.948          6719.552     20018.140   
## Num. obs.                         784              1895          1862       
## Num. groups: clus                  44                45            45       
## Var: clus (Intercept)               0.017             0.111       721.295   
## Var: clus migrant10                 0.601             0.160       977.860   
## Cov: clus (Intercept) migrant10    -0.050            -0.106      -274.438   
## Var: Residual                       0.909             1.888      2465.032   
## ────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(stress.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(wage.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

6.1.3 BA1920discriminate4prac

mentalhealth.BA1920discriminate4prac=lmer(mentalhealth~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920discriminate4prac=lmer(stress~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920discriminate4prac=lmer(wage~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920discriminate4prac, stress.BA1920discriminate4prac, wage.BA1920discriminate4prac))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress    (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.126              4.256 **    550.732 ***
##                                           (1.789)            (1.430)     (114.571)   
## BA1920discriminate4prac                    0.552             -0.340       -80.922 ** 
##                                           (0.452)            (0.365)      (29.008)   
## migrant10                                 -0.138             -0.135        24.071    
##                                           (1.326)            (0.818)      (45.037)   
## migrant10_mean                             2.834             -1.263      -445.929 ** 
##                                           (2.834)            (2.034)     (167.554)   
## BA1920discriminate4prac:migrant10          0.045              0.161        -7.328    
##                                           (0.342)            (0.213)      (11.757)   
## BA1920discriminate4prac:migrant10_mean    -0.752              0.305       108.294 *  
##                                           (0.716)            (0.520)      (42.470)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.002              0.022         0.029    
## Conditional R^2                            0.186              0.045         0.266    
## AIC                                     3932.120          11519.844     34360.730    
## BIC                                     3984.147          11580.715     34421.430    
## Num. obs.                               1343               3252          3197        
## Num. groups: clus                         66                 69            69        
## Var: clus (Intercept)                      0.031              0.101       484.532    
## Var: clus migrant10                        0.443              0.119       833.964    
## Cov: clus (Intercept) migrant10           -0.076             -0.096      -179.672    
## Var: Residual                              0.998              1.971      2563.218    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(stress.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(wage.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

6.1.4 BA20discriminate4prac

mentalhealth.BA20discriminate4prac=lmer(mentalhealth~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20discriminate4prac=lmer(stress~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20discriminate4prac=lmer(wage~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20discriminate4prac, stress.BA20discriminate4prac, wage.BA20discriminate4prac))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress  (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.263             3.766      799.836 ***
##                                         (2.418)           (1.924)    (148.826)   
## BA20discriminate4prac                    0.495            -0.232     -143.987 ***
##                                         (0.608)           (0.488)     (37.537)   
## migrant10                                1.418            -0.848       59.404    
##                                         (2.429)           (1.202)     (64.998)   
## migrant10_mean                           0.851             0.810     -815.242 ***
##                                         (4.114)           (2.896)    (230.566)   
## BA20discriminate4prac:migrant10         -0.361             0.354      -15.295    
##                                         (0.619)           (0.312)     (16.868)   
## BA20discriminate4prac:migrant10_mean    -0.186            -0.208      202.446 ***
##                                         (1.035)           (0.737)     (58.251)   
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.005             0.034        0.063    
## Conditional R^2                          0.271             0.079        0.304    
## AIC                                   2246.134          6664.171    19950.331    
## BIC                                   2292.778          6719.641    20005.625    
## Num. obs.                              784              1895         1862        
## Num. groups: clus                       44                45           45        
## Var: clus (Intercept)                    0.034             0.134      543.253    
## Var: clus migrant10                      0.757             0.236     1076.824    
## Cov: clus (Intercept) migrant10         -0.107            -0.152     -288.299    
## Var: Residual                            0.909             1.890     2467.950    
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(stress.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(wage.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

6.1.5 BA1920targetedpractices

mentalhealth.BA1920targetedpractices=lmer(mentalhealth~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920targetedpractices=lmer(stress~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920targetedpractices=lmer(wage~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920targetedpractices, stress.BA1920targetedpractices, wage.BA1920targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress     (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.592              3.761 ***    458.556 ***
##                                           (1.359)            (1.071)       (82.922)   
## BA1920targetedpractices                    0.176             -0.085        -23.362 ** 
##                                           (0.138)            (0.111)        (8.483)   
## migrant10                                  1.267              0.082         86.780 *  
##                                           (1.285)            (0.742)       (39.337)   
## migrant10_mean                             1.524             -1.239       -356.275 ** 
##                                           (2.422)            (1.660)      (134.737)   
## BA1920targetedpractices:migrant10         -0.133              0.043         -9.864 *  
##                                           (0.137)            (0.080)        (4.252)   
## BA1920targetedpractices:migrant10_mean    -0.166              0.120         34.878 *  
##                                           (0.249)            (0.173)       (13.866)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.006              0.022          0.042    
## Conditional R^2                            0.188              0.046          0.263    
## AIC                                     3936.054          11525.728      34361.078    
## BIC                                     3988.081          11586.599      34421.778    
## Num. obs.                               1343               3252           3197        
## Num. groups: clus                         66                 69             69        
## Var: clus (Intercept)                      0.023              0.106        460.780    
## Var: clus migrant10                        0.444              0.124        740.424    
## Cov: clus (Intercept) migrant10           -0.072             -0.102       -156.752    
## Var: Residual                              0.998              1.970       2563.976    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(stress.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(wage.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

6.1.6 BA20targetedpractices

mentalhealth.BA20targetedpractices=lmer(mentalhealth~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20targetedpractices=lmer(stress~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20targetedpractices=lmer(wage~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20targetedpractices, stress.BA20targetedpractices, wage.BA20targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress   (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.035             3.394 **    505.088 ***
##                                         (1.429)           (1.238)      (97.464)   
## BA20targetedpractices                    0.122            -0.055       -28.301 ** 
##                                         (0.145)           (0.128)       (9.969)   
## migrant10                                0.725             0.007        92.250 *  
##                                         (1.710)           (0.911)      (46.848)   
## migrant10_mean                           0.142            -0.787      -444.276 ** 
##                                         (2.647)           (2.055)     (167.171)   
## BA20targetedpractices:migrant10         -0.078             0.056       -10.159 *  
##                                         (0.185)           (0.100)       (5.164)   
## BA20targetedpractices:migrant10_mean     0.005             0.084        44.595 *  
##                                         (0.273)           (0.216)      (17.339)   
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.008             0.033         0.053    
## Conditional R^2                          0.275             0.080         0.308    
## AIC                                   2252.242          6672.579     19959.455    
## BIC                                   2298.886          6728.048     20014.749    
## Num. obs.                              784              1895          1862        
## Num. groups: clus                       44                45            45        
## Var: clus (Intercept)                    0.027             0.143       582.181    
## Var: clus migrant10                      0.785             0.251       974.969    
## Cov: clus (Intercept) migrant10         -0.111            -0.163      -225.049    
## Var: Residual                            0.909             1.889      2468.346    
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(stress.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(wage.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

6.2 II check for ab2: Main effect of M on W (Mplus approach)

6.2.1 BM.responsiblesourcing

BA1920FOApractices.BM.responsiblesourcing=lmer(BA1920FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM.responsiblesourcing=lmer(BA20FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM.responsiblesourcing=lmer(BA1920discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM.responsiblesourcing=lmer(BA20discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM.responsiblesourcing=lmer(BA1920targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM.responsiblesourcing=lmer(BA20targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM.responsiblesourcing, BA20FOApractices.BM.responsiblesourcing, BA1920discriminate4prac.BM.responsiblesourcing, BA20discriminate4prac.BM.responsiblesourcing, BA1920targetedpractices.BM.responsiblesourcing, BA20targetedpractices.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                         (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 19.120 ***              18.914 ***             3.744 ***                    3.803 ***                  9.198 ***                    9.794 ***           
##                             (0.039)                 (0.045)               (0.016)                      (0.018)                    (0.041)                      (0.064)              
## BM.responsiblesourcing       0.142 ***               0.337 ***             0.041 ***                    0.029 ***                  0.046 ***                   -0.214 ***           
##                             (0.013)                 (0.016)               (0.006)                      (0.007)                    (0.014)                      (0.023)              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.712                   0.933                 0.561                        0.409                      0.178                        0.746               
## Conditional R^2              1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                     -57120.330              -26048.808            -64413.734                   -40334.704                 -58670.574                   -35298.813               
## BIC                     -57097.691              -26028.097            -64391.095                   -40313.993                 -58647.935                   -35278.102               
## Num. obs.                 2121                    1310                  2121                         1310                       2121                         1310                   
## Num. groups: clus           47                      32                    47                           32                         47                           32                   
## Var: clus (Intercept)        0.017                   0.017                 0.003                        0.003                      0.021                        0.033               
## Var: Residual                0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

6.2.2 BM19.responsiblesourcing

BA1920FOApractices.BM19.responsiblesourcing=lmer(BA1920FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM19.responsiblesourcing=lmer(BA20FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM19.responsiblesourcing=lmer(BA1920discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM19.responsiblesourcing=lmer(BA20discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM19.responsiblesourcing=lmer(BA1920targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM19.responsiblesourcing=lmer(BA20targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM19.responsiblesourcing, BA20FOApractices.BM19.responsiblesourcing, BA1920discriminate4prac.BM19.responsiblesourcing, BA20discriminate4prac.BM19.responsiblesourcing, BA1920targetedpractices.BM19.responsiblesourcing, BA20targetedpractices.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.131 ***              19.273 ***             3.628 ***                    3.555 ***                  8.629 ***                    8.435 ***           
##                               (0.041)                 (0.047)               (0.019)                      (0.017)                    (0.046)                      (0.059)              
## BM19.responsiblesourcing       0.160 ***               0.180 ***             0.085 ***                    0.110 ***                  0.262 ***                    0.269 ***           
##                               (0.013)                 (0.014)               (0.005)                      (0.005)                    (0.014)                      (0.019)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.814                   0.852                 0.892                        0.941                      0.901                        0.897               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -29630.989              -29875.159            -45553.555                   -33385.425                 -40402.799                   -29807.903               
## BIC                       -29609.828              -29855.209            -45532.394                   -33365.475                 -40381.638                   -29787.953               
## Num. obs.                   1466                    1083                  1466                         1083                       1466                         1083                   
## Num. groups: clus             34                      25                    34                           25                         34                           25                   
## Var: clus (Intercept)          0.018                   0.017                 0.003                        0.002                      0.023                        0.024               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

6.2.3 BM20.responsiblesourcing

BA1920FOApractices.BM20.responsiblesourcing=lmer(BA1920FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM20.responsiblesourcing=lmer(BA20FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM20.responsiblesourcing=lmer(BA1920discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM20.responsiblesourcing=lmer(BA20discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM20.responsiblesourcing=lmer(BA1920targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM20.responsiblesourcing=lmer(BA20targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM20.responsiblesourcing, BA20FOApractices.BM20.responsiblesourcing, BA1920discriminate4prac.BM20.responsiblesourcing, BA20discriminate4prac.BM20.responsiblesourcing, BA1920targetedpractices.BM20.responsiblesourcing, BA20targetedpractices.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.522 ***              19.456 ***             3.936 ***                    4.000 ***                  9.499 ***                    9.347 ***           
##                               (0.037)                 (0.050)               (0.013)                      (0.017)                    (0.040)                      (0.058)              
## BM20.responsiblesourcing      -0.004                   0.125 ***            -0.031 ***                   -0.057 ***                 -0.092 ***                   -0.155 ***           
##                               (0.012)                 (0.016)               (0.005)                      (0.006)                    (0.013)                      (0.019)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.002                   0.634                 0.531                        0.779                      0.531                        0.669               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -42222.421              -17968.597            -49255.084                   -28111.442                 -31164.529                   -25161.019               
## BIC                       -42200.965              -17949.312            -49233.629                   -28092.157                 -31143.074                   -25141.735               
## Num. obs.                   1578                     917                  1578                          917                       1578                          917                   
## Num. groups: clus             35                      23                    35                           23                         35                           23                   
## Var: clus (Intercept)          0.019                   0.025                 0.003                        0.003                      0.023                        0.033               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

6.3 III check for cw1: Cross-level interaction of W

6.3.1 BM.responsiblesourcing

mentalhealth.BM.responsiblesourcing=lmer(mentalhealth~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM.responsiblesourcing=lmer(stress~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM.responsiblesourcing=lmer(wage~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM.responsiblesourcing, stress.BM.responsiblesourcing, wage.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                        (1) mentalhealth  (2) stress    (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.203 ***         3.200 ***    220.632 ***
##                                          (0.204)           (0.221)       (11.680)   
## BM.responsiblesourcing                    0.059            -0.146          2.481    
##                                          (0.089)           (0.095)        (5.440)   
## migrant10                                 0.471             0.131         -1.480    
##                                          (0.318)           (0.216)        (9.262)   
## migrant10_mean                           -0.171            -0.112         -3.776    
##                                          (0.370)           (0.355)       (20.186)   
## BM.responsiblesourcing:migrant10         -0.189             0.154 *       -0.292    
##                                          (0.104)           (0.072)        (3.114)   
## BM.responsiblesourcing:migrant10_mean     0.002             0.047         -1.865    
##                                          (0.141)           (0.136)        (8.149)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.026             0.032          0.002    
## Conditional R^2                           0.224             0.060          0.280    
## AIC                                    2679.246          7864.457      23273.775    
## BIC                                    2727.468          7921.451      23330.609    
## Num. obs.                               918              2207           2172        
## Num. groups: clus                        49                51             51        
## Var: clus (Intercept)                     0.036             0.131        336.865    
## Var: clus migrant10                       0.547             0.156        487.497    
## Cov: clus (Intercept) migrant10          -0.112            -0.128        202.472    
## Var: Residual                             0.964             1.992       2486.939    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

6.3.2 BM19.responsiblesourcing

mentalhealth.BM19.responsiblesourcing=lmer(mentalhealth~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM19.responsiblesourcing=lmer(stress~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM19.responsiblesourcing=lmer(wage~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM19.responsiblesourcing, stress.BM19.responsiblesourcing, wage.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.167 ***         3.749 ***    260.703 ***
##                                            (0.250)           (0.213)       (16.197)   
## BM19.responsiblesourcing                    0.027            -0.272 ***    -10.618 *  
##                                            (0.078)           (0.065)        (4.949)   
## migrant10                                   0.124             0.224          7.399    
##                                            (0.335)           (0.175)        (9.139)   
## migrant10_mean                              0.098            -0.840 *      -62.000 *  
##                                            (0.411)           (0.356)       (25.663)   
## BM19.responsiblesourcing:migrant10         -0.084             0.079         -2.504    
##                                            (0.105)           (0.054)        (2.900)   
## BM19.responsiblesourcing:migrant10_mean    -0.006             0.282 **      16.502 *  
##                                            (0.125)           (0.106)        (7.628)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.008             0.033          0.016    
## Conditional R^2                             0.240             0.040          0.252    
## AIC                                      1848.897          5459.428      16127.482    
## BIC                                      1893.480          5512.771      16180.681    
## Num. obs.                                 638              1532           1510        
## Num. groups: clus                          35                37             37        
## Var: clus (Intercept)                       0.038             0.000        250.791    
## Var: clus migrant10                         0.737             0.022        522.417    
## Cov: clus (Intercept) migrant10            -0.167             0.000        122.443    
## Var: Residual                               0.925             2.006       2409.440    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

6.3.3 BM20.responsiblesourcing

mentalhealth.BM20.responsiblesourcing=lmer(mentalhealth~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM20.responsiblesourcing=lmer(stress~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM20.responsiblesourcing=lmer(wage~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM20.responsiblesourcing, stress.BM20.responsiblesourcing, wage.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.303 ***         2.940 ***    211.021 ***
##                                            (0.182)           (0.197)       (10.468)   
## BM20.responsiblesourcing                    0.053            -0.064          9.211    
##                                            (0.089)           (0.088)        (5.733)   
## migrant10                                   0.200             0.375        -13.273    
##                                            (0.325)           (0.228)        (9.179)   
## migrant10_mean                             -0.184            -0.129         18.812    
##                                            (0.361)           (0.329)       (19.255)   
## BM20.responsiblesourcing:migrant10         -0.097             0.117          2.555    
##                                            (0.098)           (0.072)        (2.864)   
## BM20.responsiblesourcing:migrant10_mean    -0.036            -0.010        -14.249    
##                                            (0.145)           (0.127)        (8.806)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.016             0.041          0.014    
## Conditional R^2                             0.238             0.078          0.284    
## AIC                                      2003.898          5737.383      17026.667    
## BIC                                      2049.118          5791.242      17080.363    
## Num. obs.                                 680              1613           1587        
## Num. groups: clus                          37                37             37        
## Var: clus (Intercept)                       0.069             0.168        380.027    
## Var: clus migrant10                         0.654             0.241        479.045    
## Cov: clus (Intercept) migrant10            -0.158            -0.186        178.599    
## Var: Residual                               0.974             1.961       2530.237    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

7 E. 3&1 ROUND DATA

data=dat[round != 2]
Freq(data$round)
## Frequency Statistics:
## ────────────
##       N    %
## ────────────
## 1  1730 49.6
## 3  1756 50.4
## ────────────
## Total N = 3,486

7.1 I check for cw2: Cross-level interaction of M

7.1.1 BA1920FOApractices

mentalhealth.BA1920FOApractices=lmer(mentalhealth~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920FOApractices=lmer(stress~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920FOApractices=lmer(wage~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920FOApractices, stress.BA1920FOApractices, wage.BA1920FOApractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                                    (1) mentalhealth  (2) stress  (3) wage    
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.098              1.924     349.057 **
##                                      (1.701)            (1.849)   (131.217)  
## BA1920FOApractices                    0.011              0.052      -5.974   
##                                      (0.086)            (0.094)     (6.654)  
## migrant10                             6.805 *           -1.733     234.807 * 
##                                      (2.750)            (1.515)   (105.834)  
## migrant10_mean                       -4.163              4.228    -346.433   
##                                      (3.615)            (3.407)   (248.866)  
## BA1920FOApractices:migrant10         -0.346 *            0.115     -12.321 * 
##                                      (0.141)            (0.078)     (5.444)  
## BA1920FOApractices:migrant10_mean     0.205             -0.224      16.858   
##                                      (0.183)            (0.173)    (12.593)  
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.012              0.022       0.017   
## Conditional R^2                       0.181              0.041       0.244   
## AIC                                3933.788          11679.623   35610.101   
## BIC                                3985.815          11740.637   35670.977   
## Num. obs.                          1343               3299        3254       
## Num. groups: clus                    66                 69          69       
## Var: clus (Intercept)                 0.021              0.080     600.269   
## Var: clus migrant10                   0.388              0.036    1006.672   
## Cov: clus (Intercept) migrant10      -0.055             -0.046    -266.819   
## Var: Residual                         0.999              1.970    3117.852   
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(stress.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(wage.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

7.1.2 BA20FOApractices

mentalhealth.BA20FOApractices=lmer(mentalhealth~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA20FOApractices=lmer(stress~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20FOApractices=lmer(wage~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20FOApractices, stress.BA20FOApractices, wage.BA20FOApractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────
##                                  (1) mentalhealth  (2) stress  (3) wage   
## ──────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.988 **          0.601      321.332 *
##                                    (1.838)           (2.087)    (163.008) 
## BA20FOApractices                   -0.088             0.115       -4.586  
##                                    (0.092)           (0.105)      (8.219) 
## migrant10                          12.968 **         -3.796 *    322.487 *
##                                    (4.925)           (1.703)    (139.351) 
## migrant10_mean                    -11.243 *           9.973 *   -309.431  
##                                    (4.472)           (4.516)    (359.092) 
## BA20FOApractices:migrant10         -0.650 **          0.219 *    -16.268 *
##                                    (0.247)           (0.086)      (7.066) 
## BA20FOApractices:migrant10_mean     0.566 *          -0.505 *     15.001  
##                                    (0.224)           (0.226)     (18.002) 
## ──────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.028             0.036        0.019  
## Conditional R^2                     0.264             0.060        0.290  
## AIC                              2246.304          6705.257    20490.942  
## BIC                              2292.948          6760.748    20546.326  
## Num. obs.                         784              1899         1879      
## Num. groups: clus                  44                45           45      
## Var: clus (Intercept)               0.017             0.065      808.236  
## Var: clus migrant10                 0.601             0.010     1238.253  
## Cov: clus (Intercept) migrant10    -0.050            -0.017     -351.200  
## Var: Residual                       0.909             1.934     2969.807  
## ──────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(stress.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(wage.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

7.1.3 BA1920discriminate4prac

mentalhealth.BA1920discriminate4prac=lmer(mentalhealth~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920discriminate4prac=lmer(stress~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920discriminate4prac=lmer(wage~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920discriminate4prac, stress.BA1920discriminate4prac, wage.BA1920discriminate4prac))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress   (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.126              3.477 *    586.338 ***
##                                           (1.789)            (1.464)    (117.156)   
## BA1920discriminate4prac                    0.552             -0.135      -89.870 ** 
##                                           (0.452)            (0.373)     (29.691)   
## migrant10                                 -0.138              0.536       47.808    
##                                           (1.326)            (0.744)     (51.453)   
## migrant10_mean                             2.834             -0.591     -522.816 ** 
##                                           (2.834)            (2.098)    (170.652)   
## BA1920discriminate4prac:migrant10          0.045             -0.010      -13.741    
##                                           (0.342)            (0.193)     (13.418)   
## BA1920discriminate4prac:migrant10_mean    -0.752              0.115      128.392 ** 
##                                           (0.716)            (0.535)     (43.295)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.002              0.021        0.027    
## Conditional R^2                            0.186              0.040        0.237    
## AIC                                     3932.120          11675.869    35600.428    
## BIC                                     3984.147          11736.883    35661.304    
## Num. obs.                               1343               3299         3254        
## Num. groups: clus                         66                 69           69        
## Var: clus (Intercept)                      0.031              0.077      564.892    
## Var: clus migrant10                        0.443              0.045     1102.257    
## Cov: clus (Intercept) migrant10           -0.076             -0.048     -345.216    
## Var: Residual                              0.998              1.970     3118.601    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(stress.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(wage.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

7.1.4 BA20discriminate4prac

mentalhealth.BA20discriminate4prac=lmer(mentalhealth~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20discriminate4prac=lmer(stress~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20discriminate4prac=lmer(wage~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20discriminate4prac, stress.BA20discriminate4prac, wage.BA20discriminate4prac))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress  (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.263             4.929 *    858.964 ***
##                                         (2.418)           (2.025)    (150.399)   
## BA20discriminate4prac                    0.495            -0.516     -158.327 ***
##                                         (0.608)           (0.512)     (37.988)   
## migrant10                                1.418            -0.516       65.895    
##                                         (2.429)           (0.922)     (75.421)   
## migrant10_mean                           0.851            -2.022     -977.696 ***
##                                         (4.114)           (3.111)    (230.372)   
## BA20discriminate4prac:migrant10         -0.361             0.273      -16.843    
##                                         (0.619)           (0.239)     (19.562)   
## BA20discriminate4prac:migrant10_mean    -0.186             0.489      243.384 ***
##                                         (1.035)           (0.789)     (58.298)   
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.005             0.032        0.060    
## Conditional R^2                          0.271             0.060        0.273    
## AIC                                   2246.134          6704.182    20475.960    
## BIC                                   2292.778          6759.673    20531.345    
## Num. obs.                              784              1899         1879        
## Num. groups: clus                       44                45           45        
## Var: clus (Intercept)                    0.034             0.087      698.904    
## Var: clus migrant10                      0.757             0.034     1480.482    
## Cov: clus (Intercept) migrant10         -0.107            -0.042     -598.164    
## Var: Residual                            0.909             1.935     2971.240    
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(stress.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(wage.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

7.1.5 BA1920targetedpractices

mentalhealth.BA1920targetedpractices=lmer(mentalhealth~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920targetedpractices=lmer(stress~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920targetedpractices=lmer(wage~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920targetedpractices, stress.BA1920targetedpractices, wage.BA1920targetedpractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress    (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.592              3.380 **    479.872 ***
##                                           (1.359)            (1.089)      (83.658)   
## BA1920targetedpractices                    0.176             -0.045       -25.549 ** 
##                                           (0.138)            (0.112)       (8.573)   
## migrant10                                  1.267              0.687       149.445 ***
##                                           (1.285)            (0.659)      (42.932)   
## migrant10_mean                             1.524             -0.490      -410.408 ** 
##                                           (2.422)            (1.714)     (134.502)   
## BA1920targetedpractices:migrant10         -0.133             -0.020       -16.752 ***
##                                           (0.137)            (0.071)       (4.637)   
## BA1920targetedpractices:migrant10_mean    -0.166              0.038        40.774 ** 
##                                           (0.249)            (0.177)      (13.858)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.006              0.021         0.056    
## Conditional R^2                            0.188              0.040         0.230    
## AIC                                     3936.054          11681.398     35591.935    
## BIC                                     3988.081          11742.412     35652.811    
## Num. obs.                               1343               3299          3254        
## Num. groups: clus                         66                 69            69        
## Var: clus (Intercept)                      0.023              0.078       536.368    
## Var: clus migrant10                        0.444              0.048       871.962    
## Cov: clus (Intercept) migrant10           -0.072             -0.051      -316.773    
## Var: Residual                              0.998              1.970      3118.203    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(stress.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(wage.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

7.1.6 BA20targetedpractices

mentalhealth.BA20targetedpractices=lmer(mentalhealth~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20targetedpractices=lmer(stress~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20targetedpractices=lmer(wage~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20targetedpractices, stress.BA20targetedpractices, wage.BA20targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress   (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.035             4.038 **    511.145 ***
##                                         (1.429)           (1.273)      (98.019)   
## BA20targetedpractices                    0.122            -0.119       -28.673 ** 
##                                         (0.145)           (0.131)      (10.054)   
## migrant10                                0.725             0.265       160.128 ** 
##                                         (1.710)           (0.695)      (50.242)   
## migrant10_mean                           0.142            -1.522      -484.368 ** 
##                                         (2.647)           (2.143)     (165.866)   
## BA20targetedpractices:migrant10         -0.078             0.030       -17.664 ** 
##                                         (0.185)           (0.076)       (5.539)   
## BA20targetedpractices:migrant10_mean     0.005             0.149        48.682 ** 
##                                         (0.273)           (0.224)      (17.253)   
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.008             0.032         0.072    
## Conditional R^2                          0.275             0.061         0.272    
## AIC                                   2252.242          6712.523     20478.119    
## BIC                                   2298.886          6768.014     20533.504    
## Num. obs.                              784              1899          1879        
## Num. groups: clus                       44                45            45        
## Var: clus (Intercept)                    0.027             0.096       711.431    
## Var: clus migrant10                      0.785             0.046      1103.628    
## Cov: clus (Intercept) migrant10         -0.111            -0.053      -464.850    
## Var: Residual                            0.909             1.935      2970.298    
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(stress.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(wage.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

7.2 II check for ab2: Main effect of M on W (Mplus approach)

7.2.1 BM.responsiblesourcing

BA1920FOApractices.BM.responsiblesourcing=lmer(BA1920FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM.responsiblesourcing=lmer(BA20FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM.responsiblesourcing=lmer(BA1920discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM.responsiblesourcing=lmer(BA20discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM.responsiblesourcing=lmer(BA1920targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM.responsiblesourcing=lmer(BA20targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM.responsiblesourcing, BA20FOApractices.BM.responsiblesourcing, BA1920discriminate4prac.BM.responsiblesourcing, BA20discriminate4prac.BM.responsiblesourcing, BA1920targetedpractices.BM.responsiblesourcing, BA20targetedpractices.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                         (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 19.025 ***              18.913 ***             3.763 ***                    3.803 ***                  9.136 ***                    8.953 ***           
##                             (0.038)                 (0.045)               (0.015)                      (0.018)                    (0.042)                      (0.058)              
## BM.responsiblesourcing       0.206 ***               0.337 ***             0.035 ***                    0.033 ***                  0.085 ***                    0.072 ***           
##                             (0.013)                 (0.016)               (0.005)                      (0.007)                    (0.015)                      (0.021)              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.848                   0.935                 0.506                        0.474                      0.440                        0.288               
## Conditional R^2              1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                     -58225.936              -26065.044            -46726.561                   -39413.129                 -58056.338                   -25293.945               
## BIC                     -58203.295              -26044.428            -46703.920                   -39392.514                 -58033.698                   -25273.330               
## Num. obs.                 2122                    1279                  2122                         1279                       2122                         1279                   
## Num. groups: clus           47                      32                    47                           32                         47                           32                   
## Var: clus (Intercept)        0.017                   0.018                 0.003                        0.003                      0.021                        0.029               
## Var: Residual                0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

7.2.2 BM19.responsiblesourcing

BA1920FOApractices.BM19.responsiblesourcing=lmer(BA1920FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM19.responsiblesourcing=lmer(BA20FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM19.responsiblesourcing=lmer(BA1920discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM19.responsiblesourcing=lmer(BA20discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM19.responsiblesourcing=lmer(BA1920targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM19.responsiblesourcing=lmer(BA20targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM19.responsiblesourcing, BA20FOApractices.BM19.responsiblesourcing, BA1920discriminate4prac.BM19.responsiblesourcing, BA20discriminate4prac.BM19.responsiblesourcing, BA1920targetedpractices.BM19.responsiblesourcing, BA20targetedpractices.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.205 ***              19.261 ***             3.591 ***                    3.520 ***                  8.628 ***                    8.417 ***           
##                               (0.041)                 (0.047)               (0.017)                      (0.018)                    (0.046)                      (0.057)              
## BM19.responsiblesourcing       0.155 ***               0.157 ***             0.093 ***                    0.121 ***                  0.232 ***                    0.264 ***           
##                               (0.013)                 (0.015)               (0.006)                      (0.005)                    (0.014)                      (0.018)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.806                   0.814                 0.909                        0.951                      0.879                        0.895               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -38529.551              -29048.532            -44124.174                   -32150.667                 -39363.654                   -28996.036               
## BIC                       -38508.478              -29028.668            -44103.101                   -32130.803                 -39342.581                   -28976.172               
## Num. obs.                   1434                    1060                  1434                         1060                       1434                         1060                   
## Num. groups: clus             34                      25                    34                           25                         34                           25                   
## Var: clus (Intercept)          0.018                   0.017                 0.003                        0.002                      0.023                        0.025               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

7.2.3 BM20.responsiblesourcing

BA1920FOApractices.BM20.responsiblesourcing=lmer(BA1920FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM20.responsiblesourcing=lmer(BA20FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM20.responsiblesourcing=lmer(BA1920discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM20.responsiblesourcing=lmer(BA20discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM20.responsiblesourcing=lmer(BA1920targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM20.responsiblesourcing=lmer(BA20targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM20.responsiblesourcing, BA20FOApractices.BM20.responsiblesourcing, BA1920discriminate4prac.BM20.responsiblesourcing, BA20discriminate4prac.BM20.responsiblesourcing, BA1920targetedpractices.BM20.responsiblesourcing, BA20targetedpractices.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.569 ***              19.456 ***             3.953 ***                    3.995 ***                  9.526 ***                    9.234 ***           
##                               (0.037)                 (0.050)               (0.013)                      (0.016)                    (0.040)                      (0.058)              
## BM20.responsiblesourcing      -0.035 **                0.125 ***            -0.041 ***                   -0.054 ***                 -0.102 ***                   -0.119 ***           
##                               (0.012)                 (0.017)               (0.004)                      (0.005)                    (0.013)                      (0.019)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.159                   0.628                 0.669                        0.760                      0.584                        0.540               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -42662.644              -18169.262            -34988.734                   -27424.606                 -43042.544                   -24573.634               
## BIC                       -42641.173              -18150.075            -34967.263                   -27405.419                 -43021.073                   -24554.446               
## Num. obs.                   1584                     895                  1584                          895                       1584                          895                   
## Num. groups: clus             35                      23                    35                           23                         35                           23                   
## Var: clus (Intercept)          0.020                   0.026                 0.003                        0.003                      0.023                        0.034               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

7.3 III check for cw1: Cross-level interaction of W

7.3.1 BM.responsiblesourcing

mentalhealth.BM.responsiblesourcing=lmer(mentalhealth~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM.responsiblesourcing=lmer(stress~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM.responsiblesourcing=lmer(wage~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM.responsiblesourcing, stress.BM.responsiblesourcing, wage.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                        (1) mentalhealth  (2) stress    (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.203 ***         3.108 ***    216.043 ***
##                                          (0.204)           (0.221)       (14.425)   
## BM.responsiblesourcing                    0.059            -0.096          7.322    
##                                          (0.089)           (0.096)        (6.657)   
## migrant10                                 0.471             0.307          2.597    
##                                          (0.318)           (0.175)       (11.256)   
## migrant10_mean                           -0.171            -0.313         -3.097    
##                                          (0.370)           (0.348)       (23.820)   
## BM.responsiblesourcing:migrant10         -0.189             0.105         -1.673    
##                                          (0.104)           (0.057)        (3.843)   
## BM.responsiblesourcing:migrant10_mean     0.002             0.049         -6.640    
##                                          (0.141)           (0.134)        (9.720)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.026             0.031          0.008    
## Conditional R^2                           0.224             0.056          0.254    
## AIC                                    2679.246          7803.911      23757.133    
## BIC                                    2727.468          7860.887      23813.995    
## Num. obs.                               918              2203           2178        
## Num. groups: clus                        49                51             51        
## Var: clus (Intercept)                     0.036             0.100        594.608    
## Var: clus migrant10                       0.547             0.029        869.185    
## Cov: clus (Intercept) migrant10          -0.112            -0.050       -149.710    
## Var: Residual                             0.964             1.958       3001.445    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

7.3.2 BM19.responsiblesourcing

mentalhealth.BM19.responsiblesourcing=lmer(mentalhealth~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM19.responsiblesourcing=lmer(stress~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM19.responsiblesourcing=lmer(wage~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM19.responsiblesourcing, stress.BM19.responsiblesourcing, wage.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.167 ***         3.479 ***    238.351 ***
##                                            (0.250)           (0.215)       (22.352)   
## BM19.responsiblesourcing                    0.027            -0.194 **      -2.469    
##                                            (0.078)           (0.066)        (6.864)   
## migrant10                                   0.124             0.368 *       -5.217    
##                                            (0.335)           (0.178)       (10.898)   
## migrant10_mean                              0.098            -0.772 *      -25.204    
##                                            (0.411)           (0.359)       (34.253)   
## BM19.responsiblesourcing:migrant10         -0.084             0.059          2.568    
##                                            (0.105)           (0.055)        (3.519)   
## BM19.responsiblesourcing:migrant10_mean    -0.006             0.220 *        3.042    
##                                            (0.125)           (0.108)       (10.318)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.008             0.036          0.007    
## Conditional R^2                             0.240             0.049          0.292    
## AIC                                      1848.897          5305.701      15964.700    
## BIC                                      1893.480          5358.827      16017.725    
## Num. obs.                                 638              1499           1484        
## Num. groups: clus                          35                37             37        
## Var: clus (Intercept)                       0.038             0.000        604.764    
## Var: clus migrant10                         0.737             0.042        869.512    
## Cov: clus (Intercept) migrant10            -0.167             0.000       -101.775    
## Var: Residual                               0.925             1.950       2566.939    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

7.3.3 BM20.responsiblesourcing

mentalhealth.BM20.responsiblesourcing=lmer(mentalhealth~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM20.responsiblesourcing=lmer(stress~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM20.responsiblesourcing=lmer(wage~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM20.responsiblesourcing, stress.BM20.responsiblesourcing, wage.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.303 ***         2.984 ***    215.502 ***
##                                            (0.182)           (0.193)       (13.558)   
## BM20.responsiblesourcing                    0.053            -0.082         11.035    
##                                            (0.089)           (0.091)        (7.153)   
## migrant10                                   0.200             0.575 **       8.478    
##                                            (0.325)           (0.189)       (12.078)   
## migrant10_mean                             -0.184            -0.452          3.181    
##                                            (0.361)           (0.332)       (23.689)   
## BM20.responsiblesourcing:migrant10         -0.097             0.043         -4.149    
##                                            (0.098)           (0.060)        (3.763)   
## BM20.responsiblesourcing:migrant10_mean    -0.036             0.082        -13.791    
##                                            (0.145)           (0.130)       (10.668)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.016             0.037          0.027    
## Conditional R^2                             0.238             0.066          0.274    
## AIC                                      2003.898          5726.992      17529.771    
## BIC                                      2049.118          5780.857      17583.530    
## Num. obs.                                 680              1614           1597        
## Num. groups: clus                          37                37             37        
## Var: clus (Intercept)                       0.069             0.116        747.216    
## Var: clus migrant10                         0.654             0.043       1035.290    
## Cov: clus (Intercept) migrant10            -0.158            -0.063       -259.344    
## Var: Residual                               0.974             1.955       3223.863    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

8 F. 2&1 ROUND DATA

data=dat[round != 3]
Freq(data$round)
## Frequency Statistics:
## ────────────
##       N    %
## ────────────
## 1  1730 50.9
## 2  1666 49.1
## ────────────
## Total N = 3,396

8.1 I check for cw2: Cross-level interaction of M

8.1.1 BA1920FOApractices

mentalhealth.BA1920FOApractices=lmer(mentalhealth~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920FOApractices=lmer(stress~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920FOApractices=lmer(wage~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920FOApractices, stress.BA1920FOApractices, wage.BA1920FOApractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                                    (1) mentalhealth  (2) stress   (3) wage   
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.098              1.396      325.573 *
##                                      (1.701)            (1.397)    (130.955) 
## BA1920FOApractices                    0.011              0.078       -5.085  
##                                      (0.086)            (0.071)      (6.632) 
## migrant10                             6.805 *           -1.627      211.512 *
##                                      (2.750)            (1.566)     (96.137) 
## migrant10_mean                       -4.163              5.979 *   -129.961  
##                                      (3.615)            (2.880)    (250.374) 
## BA1920FOApractices:migrant10         -0.346 *            0.101      -10.561 *
##                                      (0.141)            (0.080)      (4.946) 
## BA1920FOApractices:migrant10_mean     0.205             -0.299 *      6.138  
##                                      (0.183)            (0.146)     (12.658) 
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.012              0.015        0.015  
## Conditional R^2                       0.181              0.037        0.265  
## AIC                                3933.788          11087.076    33954.999  
## BIC                                3985.815          11147.694    34015.458  
## Num. obs.                          1343               3171         3121      
## Num. groups: clus                    66                 69           69      
## Var: clus (Intercept)                 0.021              0.000      561.111  
## Var: clus migrant10                   0.388              0.060      767.134  
## Cov: clus (Intercept) migrant10      -0.055              0.000      -80.436  
## Var: Residual                         0.999              1.885     2916.971  
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(stress.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(wage.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

8.1.2 BA20FOApractices

mentalhealth.BA20FOApractices=lmer(mentalhealth~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA20FOApractices=lmer(stress~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20FOApractices=lmer(wage~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20FOApractices, stress.BA20FOApractices, wage.BA20FOApractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                                  (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.988 **         -1.424        293.229   
##                                    (1.838)           (1.596)      (168.762)  
## BA20FOApractices                   -0.088             0.217 **      -3.579   
##                                    (0.092)           (0.080)        (8.502)  
## migrant10                          12.968 **         -1.490        339.164 **
##                                    (4.925)           (2.041)      (128.570)  
## migrant10_mean                    -11.243 *          14.715 ***    -23.580   
##                                    (4.472)           (3.672)      (373.502)  
## BA20FOApractices:migrant10         -0.650 **          0.092        -16.593 * 
##                                    (0.247)           (0.103)        (6.520)  
## BA20FOApractices:migrant10_mean     0.566 *          -0.732 ***      1.246   
##                                    (0.224)           (0.184)       (18.717)  
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.028             0.029          0.035   
## Conditional R^2                     0.264             0.066          0.312   
## AIC                              2246.304          6422.458      19917.318   
## BIC                              2292.948          6477.709      19972.401   
## Num. obs.                         784              1854           1823       
## Num. groups: clus                  44                45             45       
## Var: clus (Intercept)               0.017             0.000        825.860   
## Var: clus migrant10                 0.601             0.115        960.356   
## Cov: clus (Intercept) migrant10    -0.050             0.000       -158.632   
## Var: Residual                       0.909             1.803       3031.237   
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(stress.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(wage.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

8.1.3 BA1920discriminate4prac

mentalhealth.BA1920discriminate4prac=lmer(mentalhealth~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920discriminate4prac=lmer(stress~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920discriminate4prac=lmer(wage~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920discriminate4prac, stress.BA1920discriminate4prac, wage.BA1920discriminate4prac))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress     (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.126              5.683 ***    721.435 ***
##                                           (1.789)            (1.216)      (109.609)   
## BA1920discriminate4prac                    0.552             -0.694 *     -125.224 ***
##                                           (0.452)            (0.309)       (27.761)   
## migrant10                                 -0.138             -0.157         62.781    
##                                           (1.326)            (0.728)       (46.520)   
## migrant10_mean                             2.834             -3.067       -687.740 ***
##                                           (2.834)            (1.912)      (161.371)   
## BA1920discriminate4prac:migrant10          0.045              0.130        -14.745    
##                                           (0.342)            (0.190)       (12.138)   
## BA1920discriminate4prac:migrant10_mean    -0.752              0.791        171.004 ***
##                                           (0.716)            (0.486)       (40.911)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.002              0.016          0.038    
## Conditional R^2                            0.186              0.038          0.240    
## AIC                                     3932.120          11079.835      33937.139    
## BIC                                     3984.147          11140.453      33997.598    
## Num. obs.                               1343               3171           3121        
## Num. groups: clus                         66                 69             69        
## Var: clus (Intercept)                      0.031              0.000        430.568    
## Var: clus migrant10                        0.443              0.063        866.939    
## Cov: clus (Intercept) migrant10           -0.076              0.000       -191.607    
## Var: Residual                              0.998              1.884       2919.711    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(stress.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(wage.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

8.1.4 BA20discriminate4prac

mentalhealth.BA20discriminate4prac=lmer(mentalhealth~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
## Error in lme4::lFormula(formula = mentalhealth ~ BA20discriminate4prac * : 0 (non-NA) cases
stress.BA20discriminate4prac=lmer(stress~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20discriminate4prac=lmer(wage~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20discriminate4prac, stress.BA20discriminate4prac, wage.BA20discriminate4prac))
## 
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress    (3) wage     
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.263             5.145 ***   1075.026 ***
##                                         (2.418)           (1.552)      (134.391)   
## BA20discriminate4prac                    0.495            -0.559       -214.827 ***
##                                         (0.608)           (0.392)       (33.960)   
## migrant10                                1.418            -0.192         82.800    
##                                         (2.429)           (1.016)       (71.543)   
## migrant10_mean                           0.851            -2.262      -1257.344 ***
##                                         (4.114)           (2.577)      (206.064)   
## BA20discriminate4prac:migrant10         -0.361             0.138        -18.649    
##                                         (0.619)           (0.264)       (18.568)   
## BA20discriminate4prac:migrant10_mean    -0.186             0.584        316.715 ***
##                                         (1.035)           (0.652)       (52.171)   
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.005             0.017          0.101    
## Conditional R^2                          0.271             0.059          0.272    
## AIC                                   2246.134          6429.962      19894.235    
## BIC                                   2292.778          6485.213      19949.318    
## Num. obs.                              784              1854           1823        
## Num. groups: clus                       44                45             45        
## Var: clus (Intercept)                    0.034             0.000        563.338    
## Var: clus migrant10                      0.757             0.132       1324.936    
## Cov: clus (Intercept) migrant10         -0.107             0.000       -538.691    
## Var: Residual                            0.909             1.814       3035.426    
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(stress.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(wage.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

8.1.5 BA1920targetedpractices

mentalhealth.BA1920targetedpractices=lmer(mentalhealth~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920targetedpractices=lmer(stress~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920targetedpractices=lmer(wage~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920targetedpractices, stress.BA1920targetedpractices, wage.BA1920targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress     (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.592              4.534 ***    540.410 ***
##                                           (1.359)            (0.899)       (79.141)   
## BA1920targetedpractices                    0.176             -0.162        -32.219 ***
##                                           (0.138)            (0.092)        (8.102)   
## migrant10                                  1.267              0.844        176.539 ***
##                                           (1.285)            (0.672)       (36.709)   
## migrant10_mean                             1.524             -2.738       -465.462 ***
##                                           (2.422)            (1.612)      (128.494)   
## BA1920targetedpractices:migrant10         -0.133             -0.055        -18.509 ***
##                                           (0.137)            (0.073)        (3.968)   
## BA1920targetedpractices:migrant10_mean    -0.166              0.291         46.686 ***
##                                           (0.249)            (0.167)       (13.230)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.006              0.015          0.073    
## Conditional R^2                            0.188              0.038          0.226    
## AIC                                     3936.054          11088.603      33923.399    
## BIC                                     3988.081          11149.221      33983.858    
## Num. obs.                               1343               3171           3121        
## Num. groups: clus                         66                 69             69        
## Var: clus (Intercept)                      0.023              0.000        428.172    
## Var: clus migrant10                        0.444              0.065        535.485    
## Cov: clus (Intercept) migrant10           -0.072              0.000       -164.224    
## Var: Residual                              0.998              1.885       2921.015    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(stress.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(wage.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

8.1.6 BA20targetedpractices

mentalhealth.BA20targetedpractices=lmer(mentalhealth~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
## Error in lme4::lFormula(formula = mentalhealth ~ BA20targetedpractices * : 0 (non-NA) cases
stress.BA20targetedpractices=lmer(stress~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20targetedpractices=lmer(wage~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20targetedpractices, stress.BA20targetedpractices, wage.BA20targetedpractices))
## 
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress    (3) wage     
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.035             4.463 ***    571.610 ***
##                                         (1.429)           (1.009)       (96.845)   
## BA20targetedpractices                    0.122            -0.156        -35.624 ***
##                                         (0.145)           (0.103)        (9.923)   
## migrant10                                0.725             1.029        193.245 ***
##                                         (1.710)           (0.793)       (44.021)   
## migrant10_mean                           0.142            -2.799       -541.761 ** 
##                                         (2.647)           (1.919)      (164.937)   
## BA20targetedpractices:migrant10         -0.078            -0.077        -20.184 ***
##                                         (0.185)           (0.087)        (4.855)   
## BA20targetedpractices:migrant10_mean     0.005             0.299         55.475 ** 
##                                         (0.273)           (0.199)       (17.142)   
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.008             0.017          0.099    
## Conditional R^2                          0.275             0.060          0.269    
## AIC                                   2252.242          6437.285      19896.850    
## BIC                                   2298.886          6492.536      19951.932    
## Num. obs.                              784              1854           1823        
## Num. groups: clus                       44                45             45        
## Var: clus (Intercept)                    0.027             0.000        633.690    
## Var: clus migrant10                      0.785             0.137        732.197    
## Cov: clus (Intercept) migrant10         -0.111             0.000       -305.616    
## Var: Residual                            0.909             1.814       3034.198    
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(stress.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(wage.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

8.2 II check for ab2: Main effect of M on W (Mplus approach)

8.2.1 BM.responsiblesourcing

BA1920FOApractices.BM.responsiblesourcing=lmer(BA1920FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM.responsiblesourcing=lmer(BA20FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM.responsiblesourcing=lmer(BA1920discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM.responsiblesourcing=lmer(BA20discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM.responsiblesourcing=lmer(BA1920targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM.responsiblesourcing=lmer(BA20targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM.responsiblesourcing, BA20FOApractices.BM.responsiblesourcing, BA1920discriminate4prac.BM.responsiblesourcing, BA20discriminate4prac.BM.responsiblesourcing, BA1920targetedpractices.BM.responsiblesourcing, BA20targetedpractices.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                         (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 19.041 ***              18.965 ***             3.753 ***                    3.822 ***                  9.079 ***                    8.894 ***           
##                             (0.039)                 (0.045)               (0.016)                      (0.017)                    (0.043)                      (0.057)              
## BM.responsiblesourcing       0.189 ***               0.318 ***             0.041 ***                    0.024 ***                  0.108 ***                    0.051 *             
##                             (0.013)                 (0.016)               (0.006)                      (0.006)                    (0.015)                      (0.020)              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.814                   0.929                 0.565                        0.323                      0.546                        0.170               
## Conditional R^2              1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                     -41249.157              -34409.505            -63344.034                   -39113.456                 -57225.152                   -35036.066               
## BIC                     -41226.614              -34388.871            -63321.491                   -39092.822                 -57202.609                   -35015.432               
## Num. obs.                 2071                    1285                  2071                         1285                       2071                         1285                   
## Num. groups: clus           47                      32                    47                           32                         47                           32                   
## Var: clus (Intercept)        0.018                   0.018                 0.003                        0.003                      0.021                        0.029               
## Var: Residual                0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

8.2.2 BM19.responsiblesourcing

BA1920FOApractices.BM19.responsiblesourcing=lmer(BA1920FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM19.responsiblesourcing=lmer(BA20FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM19.responsiblesourcing=lmer(BA1920discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM19.responsiblesourcing=lmer(BA20discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM19.responsiblesourcing=lmer(BA1920targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM19.responsiblesourcing=lmer(BA20targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM19.responsiblesourcing, BA20FOApractices.BM19.responsiblesourcing, BA1920discriminate4prac.BM19.responsiblesourcing, BA20discriminate4prac.BM19.responsiblesourcing, BA1920targetedpractices.BM19.responsiblesourcing, BA20targetedpractices.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.132 ***              19.163 ***             3.544 ***                    3.549 ***                  8.644 ***                    8.458 ***           
##                               (0.041)                 (0.047)               (0.018)                      (0.017)                    (0.047)                      (0.055)              
## BM19.responsiblesourcing       0.159 ***               0.203 ***             0.109 ***                    0.110 ***                  0.232 ***                    0.253 ***           
##                               (0.013)                 (0.015)               (0.006)                      (0.005)                    (0.015)                      (0.017)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.815                   0.884                 0.932                        0.943                      0.879                        0.890               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -29114.865              -29192.797            -43948.116                   -25097.447                 -28213.256                   -30013.274               
## BIC                       -29093.753              -29172.862            -43927.005                   -25077.512                 -28192.144                   -29993.338               
## Num. obs.                   1448                    1079                  1448                         1079                       1448                         1079                   
## Num. groups: clus             34                      25                    34                           25                         34                           25                   
## Var: clus (Intercept)          0.018                   0.017                 0.003                        0.002                      0.023                        0.025               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

8.2.3 BM20.responsiblesourcing

BA1920FOApractices.BM20.responsiblesourcing=lmer(BA1920FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM20.responsiblesourcing=lmer(BA20FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM20.responsiblesourcing=lmer(BA1920discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM20.responsiblesourcing=lmer(BA20discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM20.responsiblesourcing=lmer(BA1920targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM20.responsiblesourcing=lmer(BA20targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM20.responsiblesourcing, BA20FOApractices.BM20.responsiblesourcing, BA1920discriminate4prac.BM20.responsiblesourcing, BA20discriminate4prac.BM20.responsiblesourcing, BA1920targetedpractices.BM20.responsiblesourcing, BA20targetedpractices.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.480 ***              19.462 ***             3.953 ***                    4.006 ***                  9.454 ***                    9.396 ***           
##                               (0.037)                 (0.051)               (0.014)                      (0.016)                    (0.041)                      (0.059)              
## BM20.responsiblesourcing       0.040 **                0.103 ***            -0.041 ***                   -0.058 ***                 -0.073 ***                   -0.157 ***           
##                               (0.012)                 (0.017)               (0.005)                      (0.005)                    (0.013)                      (0.020)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.196                   0.534                 0.657                        0.784                      0.401                        0.671               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -40677.287              -23293.336            -33887.879                   -26822.025                 -41530.006                   -23780.858               
## BIC                       -40655.992              -23274.244            -33866.584                   -26802.933                 -41508.710                   -23761.766               
## Num. obs.                   1516                     874                  1516                          874                       1516                          874                   
## Num. groups: clus             35                      23                    35                           23                         35                           23                   
## Var: clus (Intercept)          0.020                   0.026                 0.003                        0.003                      0.024                        0.035               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

8.3 III check for cw1: Cross-level interaction of W

8.3.1 BM.responsiblesourcing

mentalhealth.BM.responsiblesourcing=lmer(mentalhealth~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM.responsiblesourcing=lmer(stress~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM.responsiblesourcing=lmer(wage~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM.responsiblesourcing, stress.BM.responsiblesourcing, wage.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                                        (1) mentalhealth  (2) stress    (3) wage     
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.203 ***         3.093 ***    209.404 ***
##                                          (0.204)           (0.156)       (14.085)   
## BM.responsiblesourcing                    0.059            -0.124          7.095    
##                                          (0.089)           (0.071)        (6.591)   
## migrant10                                 0.471             0.225          5.909    
##                                          (0.318)           (0.187)        (9.801)   
## migrant10_mean                           -0.171             0.029         17.345    
##                                          (0.370)           (0.289)       (23.842)   
## BM.responsiblesourcing:migrant10         -0.189             0.047          0.466    
##                                          (0.104)           (0.062)        (3.328)   
## BM.responsiblesourcing:migrant10_mean     0.002             0.090        -10.780    
##                                          (0.141)           (0.113)        (9.737)   
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.026             0.020          0.005    
## Conditional R^2                           0.224             0.051          0.286    
## AIC                                    2679.246          7575.831      23186.351    
## BIC                                    2727.468          7632.656      23243.009    
## Num. obs.                               918              2170           2134        
## Num. groups: clus                        49                51             51        
## Var: clus (Intercept)                     0.036             0.000        542.087    
## Var: clus migrant10                       0.547             0.087        557.222    
## Cov: clus (Intercept) migrant10          -0.112             0.000        149.871    
## Var: Residual                             0.964             1.858       2876.733    
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

8.3.2 BM19.responsiblesourcing

mentalhealth.BM19.responsiblesourcing=lmer(mentalhealth~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM19.responsiblesourcing=lmer(stress~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM19.responsiblesourcing=lmer(wage~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM19.responsiblesourcing, stress.BM19.responsiblesourcing, wage.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.167 ***         3.262 ***    261.248 ***
##                                            (0.250)           (0.210)       (21.513)   
## BM19.responsiblesourcing                    0.027            -0.152 *      -10.342    
##                                            (0.078)           (0.065)        (6.643)   
## migrant10                                   0.124             0.345          4.428    
##                                            (0.335)           (0.182)        (9.876)   
## migrant10_mean                              0.098            -0.458        -55.069    
##                                            (0.411)           (0.357)       (33.413)   
## BM19.responsiblesourcing:migrant10         -0.084            -0.011          1.734    
##                                            (0.105)           (0.057)        (3.158)   
## BM19.responsiblesourcing:migrant10_mean    -0.006             0.232 *       12.067    
##                                            (0.125)           (0.108)       (10.060)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.008             0.022          0.014    
## Conditional R^2                             0.240             0.052          0.277    
## AIC                                      1848.897          5298.895      16196.138    
## BIC                                      1893.480          5352.180      16249.257    
## Num. obs.                                 638              1523           1498        
## Num. groups: clus                          35                37             37        
## Var: clus (Intercept)                       0.038             0.000        534.906    
## Var: clus migrant10                         0.737             0.087        630.098    
## Cov: clus (Intercept) migrant10            -0.167             0.000         34.204    
## Var: Residual                               0.925             1.824       2726.250    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

8.3.3 BM20.responsiblesourcing

mentalhealth.BM20.responsiblesourcing=lmer(mentalhealth~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM20.responsiblesourcing=lmer(stress~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM20.responsiblesourcing=lmer(wage~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM20.responsiblesourcing, stress.BM20.responsiblesourcing, wage.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.303 ***         2.896 ***    202.722 ***
##                                            (0.182)           (0.131)       (13.658)   
## BM20.responsiblesourcing                    0.053            -0.033         13.612    
##                                            (0.089)           (0.068)        (7.420)   
## migrant10                                   0.200             0.140         14.066    
##                                            (0.325)           (0.196)        (9.308)   
## migrant10_mean                             -0.184             0.351         25.219    
##                                            (0.361)           (0.279)       (24.502)   
## BM20.responsiblesourcing:migrant10         -0.097             0.073         -2.982    
##                                            (0.098)           (0.062)        (2.905)   
## BM20.responsiblesourcing:migrant10_mean    -0.036            -0.062        -18.431    
##                                            (0.145)           (0.115)       (11.239)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.016             0.019          0.024    
## Conditional R^2                             0.238             0.050          0.317    
## AIC                                      2003.898          5449.057      16698.589    
## BIC                                      2049.118          5502.549      16751.907    
## Num. obs.                                 680              1555           1528        
## Num. groups: clus                          37                37             37        
## Var: clus (Intercept)                       0.069             0.000        710.717    
## Var: clus migrant10                         0.654             0.089        398.168    
## Cov: clus (Intercept) migrant10            -0.158             0.000        250.834    
## Var: Residual                               0.974             1.872       3079.416    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

9 G. 3&2&1 ROUND DATA

data=dat
Freq(data$round)
## Frequency Statistics:
## ───────────────
##          N    %
## ───────────────
## 1     1730 33.5
## 2     1666 32.3
## 3     1756 34.0
## (NA)    12  0.2
## ───────────────
## Total N = 5,164
## Valid N = 5,152

9.1 I check for cw2: Cross-level interaction of M

9.1.1 BA1920FOApractices

mentalhealth.BA1920FOApractices=lmer(mentalhealth~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920FOApractices=lmer(stress~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920FOApractices=lmer(wage~BA1920FOApractices*migrant10+migrant10_mean*BA1920FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920FOApractices, stress.BA1920FOApractices, wage.BA1920FOApractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────
##                                    (1) mentalhealth  (2) stress   (3) wage    
## ──────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.098              2.321 *    364.961 **
##                                      (1.701)            (1.133)    (121.853)  
## BA1920FOApractices                    0.011              0.032       -6.839   
##                                      (0.086)            (0.057)      (6.180)  
## migrant10                             6.805 *           -2.010      221.605 * 
##                                      (2.750)            (1.228)     (90.090)  
## migrant10_mean                       -4.163              3.876     -285.516   
##                                      (3.615)            (2.306)    (229.915)  
## BA1920FOApractices:migrant10         -0.346 *            0.125 *    -11.467 * 
##                                      (0.141)            (0.063)      (4.635)  
## BA1920FOApractices:migrant10_mean     0.205             -0.198       13.761   
##                                      (0.183)            (0.117)     (11.634)  
## ──────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.012              0.019        0.018   
## Conditional R^2                       0.181              0.025        0.227   
## AIC                                3933.788          17153.430    52048.103   
## BIC                                3985.815          17218.320    52112.838   
## Num. obs.                          1343               4861         4786       
## Num. groups: clus                    66                 69           69       
## Var: clus (Intercept)                 0.021              0.000      552.936   
## Var: clus migrant10                   0.388              0.018      762.851   
## Cov: clus (Intercept) migrant10      -0.055              0.000     -209.632   
## Var: Residual                         0.999              1.970     2949.941   
## ──────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(stress.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

interact_plot(wage.BA1920FOApractices, modx = BA1920FOApractices, pred = migrant10)

9.1.2 BA20FOApractices

mentalhealth.BA20FOApractices=lmer(mentalhealth~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA20FOApractices=lmer(stress~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20FOApractices=lmer(wage~BA20FOApractices*migrant10+migrant10_mean*BA20FOApractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20FOApractices, stress.BA20FOApractices, wage.BA20FOApractices))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                                  (1) mentalhealth  (2) stress    (3) wage    
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.988 **         -0.318        343.333 * 
##                                    (1.838)           (1.313)      (153.515)  
## BA20FOApractices                   -0.088             0.161 *       -5.840   
##                                    (0.092)           (0.066)        (7.743)  
## migrant10                          12.968 **         -3.705 *      330.032 **
##                                    (4.925)           (1.575)      (118.723)  
## migrant10_mean                    -11.243 *          12.872 ***   -232.087   
##                                    (4.472)           (3.019)      (337.847)  
## BA20FOApractices:migrant10         -0.650 **          0.210 **     -16.519 **
##                                    (0.247)           (0.080)        (6.020)  
## BA20FOApractices:migrant10_mean     0.566 *          -0.644 ***     11.308   
##                                    (0.224)           (0.151)       (16.942)  
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.028             0.033          0.025   
## Conditional R^2                     0.264             0.047          0.265   
## AIC                              2246.304          9903.803      30261.834   
## BIC                              2292.948          9963.262      30321.143   
## Num. obs.                         784              2824           2782       
## Num. groups: clus                  44                45             45       
## Var: clus (Intercept)               0.017             0.000        755.572   
## Var: clus migrant10                 0.601             0.047        904.302   
## Cov: clus (Intercept) migrant10    -0.050             0.000       -286.989   
## Var: Residual                       0.909             1.911       2938.176   
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(stress.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

interact_plot(wage.BA20FOApractices, modx = BA20FOApractices, pred = migrant10)

9.1.3 BA1920discriminate4prac

mentalhealth.BA1920discriminate4prac=lmer(mentalhealth~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920discriminate4prac=lmer(stress~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920discriminate4prac=lmer(wage~BA1920discriminate4prac*migrant10+migrant10_mean*BA1920discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920discriminate4prac, stress.BA1920discriminate4prac, wage.BA1920discriminate4prac))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress     (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.126              4.949 ***    619.687 ***
##                                           (1.789)            (0.963)      (107.676)   
## BA1920discriminate4prac                    0.552             -0.509 *      -98.444 ***
##                                           (0.452)            (0.245)       (27.279)   
## migrant10                                 -0.138              0.062         42.220    
##                                           (1.326)            (0.582)       (43.268)   
## migrant10_mean                             2.834             -2.286       -550.459 ***
##                                           (2.834)            (1.491)      (156.228)   
## BA1920discriminate4prac:migrant10          0.045              0.094        -11.363    
##                                           (0.342)            (0.151)       (11.288)   
## BA1920discriminate4prac:migrant10_mean    -0.752              0.575        135.151 ***
##                                           (0.716)            (0.379)       (39.617)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.002              0.018          0.030    
## Conditional R^2                            0.186              0.026          0.220    
## AIC                                     3932.120          17147.268      52036.676    
## BIC                                     3984.147          17212.158      52101.411    
## Num. obs.                               1343               4861           4786        
## Num. groups: clus                         66                 69             69        
## Var: clus (Intercept)                      0.031              0.000        487.449    
## Var: clus migrant10                        0.443              0.021        830.607    
## Cov: clus (Intercept) migrant10           -0.076              0.000       -255.697    
## Var: Residual                              0.998              1.969       2950.902    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(stress.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

interact_plot(wage.BA1920discriminate4prac, modx = BA1920discriminate4prac, pred = migrant10)

9.1.4 BA20discriminate4prac

mentalhealth.BA20discriminate4prac=lmer(mentalhealth~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20discriminate4prac=lmer(stress~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20discriminate4prac=lmer(wage~BA20discriminate4prac*migrant10+migrant10_mean*BA20discriminate4prac+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20discriminate4prac, stress.BA20discriminate4prac, wage.BA20discriminate4prac))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress  (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.263             4.557 *    920.231 ***
##                                         (2.418)           (1.907)    (136.065)   
## BA20discriminate4prac                    0.495            -0.429     -174.347 ***
##                                         (0.608)           (0.482)     (34.361)   
## migrant10                                1.418            -0.511       64.779    
##                                         (2.429)           (0.733)     (63.698)   
## migrant10_mean                           0.851            -1.000    -1028.206 ***
##                                         (4.114)           (2.944)    (207.739)   
## BA20discriminate4prac:migrant10         -0.361             0.255      -15.848    
##                                         (0.619)           (0.190)     (16.524)   
## BA20discriminate4prac:migrant10_mean    -0.186             0.256      256.597 ***
##                                         (1.035)           (0.746)     (52.554)   
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.005             0.029        0.073    
## Conditional R^2                          0.271             0.059        0.249    
## AIC                                   2246.134          9895.508    30244.331    
## BIC                                   2292.778          9954.967    30303.640    
## Num. obs.                              784              2824         2782        
## Num. groups: clus                       44                45           45        
## Var: clus (Intercept)                    0.034             0.079      582.481    
## Var: clus migrant10                      0.757             0.025     1099.601    
## Cov: clus (Intercept) migrant10         -0.107            -0.028     -462.123    
## Var: Residual                            0.909             1.895     2939.981    
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(stress.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

interact_plot(wage.BA20discriminate4prac, modx = BA20discriminate4prac, pred = migrant10)

9.1.5 BA1920targetedpractices

mentalhealth.BA1920targetedpractices=lmer(mentalhealth~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BA1920targetedpractices=lmer(stress~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA1920targetedpractices=lmer(wage~BA1920targetedpractices*migrant10+migrant10_mean*BA1920targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA1920targetedpractices, stress.BA1920targetedpractices, wage.BA1920targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                         (1) mentalhealth  (2) stress     (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                1.592              4.018 ***    486.007 ***
##                                           (1.359)            (0.708)       (77.236)   
## BA1920targetedpractices                    0.176             -0.110        -26.219 ***
##                                           (0.138)            (0.073)        (7.912)   
## migrant10                                  1.267              0.478        132.130 ***
##                                           (1.285)            (0.522)       (35.762)   
## migrant10_mean                             1.524             -1.543       -396.469 ** 
##                                           (2.422)            (1.233)      (123.611)   
## BA1920targetedpractices:migrant10         -0.133             -0.006        -14.496 ***
##                                           (0.137)            (0.056)        (3.864)   
## BA1920targetedpractices:migrant10_mean    -0.166              0.158         39.162 ** 
##                                           (0.249)            (0.128)       (12.728)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                               0.006              0.018          0.054    
## Conditional R^2                            0.188              0.025          0.213    
## AIC                                     3936.054          17155.963      52028.410    
## BIC                                     3988.081          17220.853      52093.145    
## Num. obs.                               1343               4861           4786        
## Num. groups: clus                         66                 69             69        
## Var: clus (Intercept)                      0.023              0.000        466.788    
## Var: clus migrant10                        0.444              0.020        635.638    
## Cov: clus (Intercept) migrant10           -0.072              0.000       -228.312    
## Var: Residual                              0.998              1.970       2951.350    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(stress.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

interact_plot(wage.BA1920targetedpractices, modx = BA1920targetedpractices, pred = migrant10)

9.1.6 BA20targetedpractices

mentalhealth.BA20targetedpractices=lmer(mentalhealth~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
stress.BA20targetedpractices=lmer(stress~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BA20targetedpractices=lmer(wage~BA20targetedpractices*migrant10+migrant10_mean*BA20targetedpractices+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BA20targetedpractices, stress.BA20targetedpractices, wage.BA20targetedpractices))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                       (1) mentalhealth  (2) stress   (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.035             3.500 **    524.109 ***
##                                         (1.429)           (1.200)      (91.900)   
## BA20targetedpractices                    0.122            -0.066       -30.227 ** 
##                                         (0.145)           (0.123)       (9.420)   
## migrant10                                0.725             0.406       141.959 ***
##                                         (1.710)           (0.577)      (42.236)   
## migrant10_mean                           0.142            -0.864      -476.885 ** 
##                                         (2.647)           (2.035)     (155.287)   
## BA20targetedpractices:migrant10         -0.078             0.007       -15.328 ***
##                                         (0.185)           (0.064)       (4.656)   
## BA20targetedpractices:migrant10_mean     0.005             0.094        48.009 ** 
##                                         (0.273)           (0.212)      (16.140)   
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.008             0.028         0.070    
## Conditional R^2                          0.275             0.060         0.248    
## AIC                                   2252.242          9904.829     30249.289    
## BIC                                   2298.886          9964.288     30308.599    
## Num. obs.                              784              2824          2782        
## Num. groups: clus                       44                45            45        
## Var: clus (Intercept)                    0.027             0.088       619.685    
## Var: clus migrant10                      0.785             0.039       800.754    
## Cov: clus (Intercept) migrant10         -0.111            -0.039      -336.537    
## Var: Residual                            0.909             1.894      2939.984    
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(stress.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

interact_plot(wage.BA20targetedpractices, modx = BA20targetedpractices, pred = migrant10)

9.2 II check for ab2: Main effect of M on W (Mplus approach)

9.2.1 BM.responsiblesourcing

BA1920FOApractices.BM.responsiblesourcing=lmer(BA1920FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM.responsiblesourcing=lmer(BA20FOApractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM.responsiblesourcing=lmer(BA1920discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM.responsiblesourcing=lmer(BA20discriminate4prac~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM.responsiblesourcing=lmer(BA1920targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM.responsiblesourcing=lmer(BA20targetedpractices~BM.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM.responsiblesourcing, BA20FOApractices.BM.responsiblesourcing, BA1920discriminate4prac.BM.responsiblesourcing, BA20discriminate4prac.BM.responsiblesourcing, BA1920targetedpractices.BM.responsiblesourcing, BA20targetedpractices.BM.responsiblesourcing))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                         (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 18.980 ***              18.914 ***             3.763 ***                    3.808 ***                  8.920 ***                    8.953 ***           
##                             (0.030)                 (0.037)               (0.013)                      (0.015)                    (0.035)                      (0.047)              
## BM.responsiblesourcing       0.206 ***               0.336 ***             0.035 ***                    0.031 ***                  0.125 ***                    0.072 ***           
##                             (0.011)                 (0.013)               (0.004)                      (0.006)                    (0.012)                      (0.017)              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.889                   0.955                 0.596                        0.552                      0.709                        0.375               
## Conditional R^2              1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                     -87476.157              -40334.281            -73774.530                   -59487.223                 -85366.927                   -40323.288               
## BIC                     -87451.927              -40312.005            -73750.300                   -59464.947                 -85342.697                   -40301.013               
## Num. obs.                 3157                    1937                  3157                         1937                       3157                         1937                   
## Num. groups: clus           47                      32                    47                           32                         47                           32                   
## Var: clus (Intercept)        0.012                   0.012                 0.002                        0.002                      0.014                        0.019               
## Var: Residual                0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

9.2.2 BM19.responsiblesourcing

BA1920FOApractices.BM19.responsiblesourcing=lmer(BA1920FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM19.responsiblesourcing=lmer(BA20FOApractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM19.responsiblesourcing=lmer(BA1920discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM19.responsiblesourcing=lmer(BA20discriminate4prac~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM19.responsiblesourcing=lmer(BA1920targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM19.responsiblesourcing=lmer(BA20targetedpractices~BM19.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM19.responsiblesourcing, BA20FOApractices.BM19.responsiblesourcing, BA1920discriminate4prac.BM19.responsiblesourcing, BA20discriminate4prac.BM19.responsiblesourcing, BA1920targetedpractices.BM19.responsiblesourcing, BA20targetedpractices.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.131 ***              19.194 ***             3.548 ***                    3.549 ***                  8.644 ***                    8.190 ***           
##                               (0.034)                 (0.038)               (0.013)                      (0.014)                    (0.038)                      (0.047)              
## BM19.responsiblesourcing       0.159 ***               0.199 ***             0.103 ***                    0.110 ***                  0.232 ***                    0.346 ***           
##                               (0.010)                 (0.012)               (0.004)                      (0.004)                    (0.012)                      (0.015)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.868                   0.915                 0.949                        0.961                      0.916                        0.956               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -46020.905              -34113.776            -48879.709                   -37238.857                 -44756.585                   -44829.119               
## BIC                       -45998.167              -34092.237            -48856.972                   -37217.318                 -44733.848                   -44807.580               
## Num. obs.                   2174                    1611                  2174                         1611                       2174                         1611                   
## Num. groups: clus             34                      25                    34                           25                         34                           25                   
## Var: clus (Intercept)          0.012                   0.011                 0.002                        0.002                      0.015                        0.017               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

9.2.3 BM20.responsiblesourcing

BA1920FOApractices.BM20.responsiblesourcing=lmer(BA1920FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20FOApractices.BM20.responsiblesourcing=lmer(BA20FOApractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920discriminate4prac.BM20.responsiblesourcing=lmer(BA1920discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20discriminate4prac.BM20.responsiblesourcing=lmer(BA20discriminate4prac~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA1920targetedpractices.BM20.responsiblesourcing=lmer(BA1920targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
BA20targetedpractices.BM20.responsiblesourcing=lmer(BA20targetedpractices~BM20.responsiblesourcing+ (1|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(BA1920FOApractices.BM20.responsiblesourcing, BA20FOApractices.BM20.responsiblesourcing, BA1920discriminate4prac.BM20.responsiblesourcing, BA20discriminate4prac.BM20.responsiblesourcing, BA1920targetedpractices.BM20.responsiblesourcing, BA20targetedpractices.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                           (1) BA1920FOApractices  (2) BA20FOApractices  (3) BA1920discriminate4prac  (4) BA20discriminate4prac  (5) BA1920targetedpractices  (6) BA20targetedpractices
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   19.507 ***              19.481 ***             3.965 ***                    3.984 ***                  9.409 ***                    9.361 ***           
##                               (0.030)                 (0.042)               (0.011)                      (0.013)                    (0.033)                      (0.048)              
## BM20.responsiblesourcing       0.015                   0.125 ***            -0.043 ***                   -0.043 ***                 -0.093 ***                   -0.132 ***           
##                               (0.010)                 (0.014)               (0.004)                      (0.004)                    (0.011)                      (0.015)              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.052                   0.720                 0.761                        0.751                      0.626                        0.685               
## Conditional R^2                1.000                   1.000                 1.000                        1.000                      1.000                        1.000               
## AIC                       -47300.448              -36078.636            -71743.898                   -41904.700                 -64425.273                   -36714.317               
## BIC                       -47277.418              -36057.826            -71720.868                   -41883.889                 -64402.243                   -36693.506               
## Num. obs.                   2339                    1343                  2339                         1343                       2339                         1343                   
## Num. groups: clus             35                      23                    35                           23                         35                           23                   
## Var: clus (Intercept)          0.013                   0.017                 0.002                        0.002                      0.016                        0.023               
## Var: Residual                  0.000                   0.000                 0.000                        0.000                      0.000                        0.000               
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

9.3 III check for cw1: Cross-level interaction of W

9.3.1 BM.responsiblesourcing

mentalhealth.BM.responsiblesourcing=lmer(mentalhealth~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM.responsiblesourcing=lmer(stress~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM.responsiblesourcing=lmer(wage~BM.responsiblesourcing*migrant10+migrant10_mean*BM.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM.responsiblesourcing, stress.BM.responsiblesourcing, wage.BM.responsiblesourcing))
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                                        (1) mentalhealth  (2) stress     (3) wage     
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.203 ***          3.197 ***    215.275 ***
##                                          (0.204)            (0.132)       (12.571)   
## BM.responsiblesourcing                    0.059             -0.147 *        6.196    
##                                          (0.089)            (0.058)        (5.851)   
## migrant10                                 0.471              0.193          1.869    
##                                          (0.318)            (0.148)        (8.662)   
## migrant10_mean                           -0.171             -0.157          3.194    
##                                          (0.370)            (0.238)       (21.042)   
## BM.responsiblesourcing:migrant10         -0.189              0.101 *       -0.459    
##                                          (0.104)            (0.049)        (2.947)   
## BM.responsiblesourcing:migrant10_mean     0.002              0.093         -7.043    
##                                          (0.141)            (0.091)        (8.583)   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.026              0.025          0.004    
## Conditional R^2                           0.224              0.035          0.232    
## AIC                                    2679.246          11630.794      35180.882    
## BIC                                    2727.468          11691.780      35241.721    
## Num. obs.                               918               3290           3242        
## Num. groups: clus                        49                 51             51        
## Var: clus (Intercept)                     0.036              0.000        457.869    
## Var: clus migrant10                       0.547              0.028        480.311    
## Cov: clus (Intercept) migrant10          -0.112              0.000         49.295    
## Var: Residual                             0.964              1.972       2885.768    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM.responsiblesourcing, modx = BM.responsiblesourcing, pred = migrant10)

9.3.2 BM19.responsiblesourcing

mentalhealth.BM19.responsiblesourcing=lmer(mentalhealth~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM19.responsiblesourcing=lmer(stress~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM19.responsiblesourcing=lmer(wage~BM19.responsiblesourcing*migrant10+migrant10_mean*BM19.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM19.responsiblesourcing, stress.BM19.responsiblesourcing, wage.BM19.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.167 ***         3.498 ***    256.830 ***
##                                            (0.250)           (0.174)       (19.185)   
## BM19.responsiblesourcing                    0.027            -0.208 ***     -8.240    
##                                            (0.078)           (0.053)        (5.906)   
## migrant10                                   0.124             0.318 *        2.336    
##                                            (0.335)           (0.143)        (8.592)   
## migrant10_mean                              0.098            -0.695 *      -53.179    
##                                            (0.411)           (0.292)       (29.473)   
## BM19.responsiblesourcing:migrant10         -0.084             0.041          0.317    
##                                            (0.105)           (0.044)        (2.753)   
## BM19.responsiblesourcing:migrant10_mean    -0.006             0.249 **      11.495    
##                                            (0.125)           (0.088)        (8.876)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.008             0.030          0.012    
## Conditional R^2                             0.240             0.038          0.229    
## AIC                                      1848.897          8026.896      24189.247    
## BIC                                      1893.480          8084.202      24246.416    
## Num. obs.                                 638              2277           2246        
## Num. groups: clus                          35                37             37        
## Var: clus (Intercept)                       0.038             0.000        447.763    
## Var: clus migrant10                         0.737             0.027        520.127    
## Cov: clus (Intercept) migrant10            -0.167             0.000        -31.414    
## Var: Residual                               0.925             1.943       2655.521    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM19.responsiblesourcing, modx = BM19.responsiblesourcing, pred = migrant10)

9.3.3 BM20.responsiblesourcing

mentalhealth.BM20.responsiblesourcing=lmer(mentalhealth~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = dat3, control=lmerControl(optimizer="bobyqa"))
stress.BM20.responsiblesourcing=lmer(stress~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))
wage.BM20.responsiblesourcing=lmer(wage~BM20.responsiblesourcing*migrant10+migrant10_mean*BM20.responsiblesourcing+ (migrant10|clus), na.action = na.exclude, data = data, control=lmerControl(optimizer="bobyqa"))

model_summary(list(mentalhealth.BM20.responsiblesourcing, stress.BM20.responsiblesourcing, wage.BM20.responsiblesourcing))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                          (1) mentalhealth  (2) stress    (3) wage     
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.303 ***         2.969 ***    210.592 ***
##                                            (0.182)           (0.168)       (11.955)   
## BM20.responsiblesourcing                    0.053            -0.096         11.624    
##                                            (0.089)           (0.077)        (6.456)   
## migrant10                                   0.200             0.385 *        2.085    
##                                            (0.325)           (0.169)        (8.823)   
## migrant10_mean                             -0.184            -0.150         14.302    
##                                            (0.361)           (0.281)       (21.052)   
## BM20.responsiblesourcing:migrant10         -0.097             0.074         -1.315    
##                                            (0.098)           (0.053)        (2.750)   
## BM20.responsiblesourcing:migrant10_mean    -0.036             0.057        -15.934    
##                                            (0.145)           (0.111)        (9.655)   
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.016             0.033          0.019    
## Conditional R^2                             0.238             0.059          0.250    
## AIC                                      2003.898          8446.308      25692.881    
## BIC                                      2049.118          8504.103      25750.528    
## Num. obs.                                 680              2391           2356        
## Num. groups: clus                          37                37             37        
## Var: clus (Intercept)                       0.069             0.111        575.471    
## Var: clus migrant10                         0.654             0.087        495.406    
## Cov: clus (Intercept) migrant10            -0.158            -0.085         20.366    
## Var: Residual                               0.974             1.940       3050.200    
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
interact_plot(mentalhealth.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(stress.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)

interact_plot(wage.BM20.responsiblesourcing, modx = BM20.responsiblesourcing, pred = migrant10)