Experimento RSM design CCD - Rotacional: Livro Montgomery (DOE):
Exemplo 11.2
library(rsm)
library(lmtest)
library(car)
library(nortest)
library(FrF2)
library(rio)
DOE<- ccd(basis = 2,
alpha = "rotatable",
n0=c(5,0),
oneblock = T,
randomize = F,
coding = list(x1~(a-85)/5,
x2~(b-175)/5))
DOE
run.order std.order a b
1 1 1 80.00000 170.0000
2 2 2 90.00000 170.0000
3 3 3 80.00000 180.0000
4 4 4 90.00000 180.0000
5 5 5 85.00000 175.0000
6 6 6 85.00000 175.0000
7 7 7 85.00000 175.0000
8 8 8 85.00000 175.0000
9 9 9 85.00000 175.0000
10 1 1 77.92893 175.0000
11 2 2 92.07107 175.0000
12 3 3 85.00000 167.9289
13 4 4 85.00000 182.0711
Data are stored in coded form using these coding formulas ...
x1 ~ (a - 85)/5
x2 ~ (b - 175)/5
DOE$y1<-c(76.5,77,78,79.5,79.9,80.3,80,79.7,79.8,
75.6,78.4,77,78.5)
DOE$y2<-c(62,60,66,59,72,69,68,70,71,71,68,57,58)
DOE$y3<-c(2940,3470,3680,3890,3480,3200,3410,3290,3500,
3020,3360,3150,3630)
DOE
run.order std.order a b y1 y2 y3
1 1 1 80.00000 170.0000 76.5 62 2940
2 2 2 90.00000 170.0000 77.0 60 3470
3 3 3 80.00000 180.0000 78.0 66 3680
4 4 4 90.00000 180.0000 79.5 59 3890
5 5 5 85.00000 175.0000 79.9 72 3480
6 6 6 85.00000 175.0000 80.3 69 3200
7 7 7 85.00000 175.0000 80.0 68 3410
8 8 8 85.00000 175.0000 79.7 70 3290
9 9 9 85.00000 175.0000 79.8 71 3500
10 1 1 77.92893 175.0000 75.6 71 3020
11 2 2 92.07107 175.0000 78.4 68 3360
12 3 3 85.00000 167.9289 77.0 57 3150
13 4 4 85.00000 182.0711 78.5 58 3630
Data are stored in coded form using these coding formulas ...
x1 ~ (a - 85)/5
x2 ~ (b - 175)/5
funcao<- rsm(y1~SO(x1,x2),data = DOE)
summary(funcao)
Call:
rsm(formula = y1 ~ SO(x1, x2), data = DOE)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.94000 0.20104 397.6418 < 2.2e-16 ***
x1 0.74497 0.15893 4.6874 0.002241 **
x2 0.76517 0.15893 4.8144 0.001934 **
x1:x2 0.25000 0.22476 1.1123 0.302754
x1^2 -1.37625 0.17044 -8.0749 8.588e-05 ***
x2^2 -1.00125 0.17044 -5.8746 0.000615 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-squared: 0.9508, Adjusted R-squared: 0.9156
F-statistic: 27.05 on 5 and 7 DF, p-value: 0.0001935
Analysis of Variance Table
Response: y1
Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 9.1237 4.5619 22.5750 0.0008860
TWI(x1, x2) 1 0.2500 0.2500 1.2372 0.3027535
PQ(x1, x2) 2 17.9548 8.9774 44.4260 0.0001053
Residuals 7 1.4145 0.2021
Lack of fit 3 1.2025 0.4008 7.5631 0.0399491
Pure error 4 0.2120 0.0530
Stationary point of response surface:
x1 x2
0.3088613 0.4206644
Stationary point in original units:
a b
86.54431 177.10332
Eigenanalysis:
eigen() decomposition
$values
[1] -0.963403 -1.414097
$vectors
[,1] [,2]
x1 -0.2897841 -0.9570920
x2 -0.9570920 0.2897841
funcao<-rsm(y1~FO(x1,x2)+PQ(x1,x2),data = DOE)
summary(funcao)
Call:
rsm(formula = y1 ~ FO(x1, x2) + PQ(x1, x2), data = DOE)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.94000 0.20399 391.8756 < 2.2e-16 ***
x1 0.74497 0.16127 4.6194 0.0017115 **
x2 0.76517 0.16127 4.7446 0.0014553 **
x1^2 -1.37625 0.17294 -7.9578 4.536e-05 ***
x2^2 -1.00125 0.17294 -5.7895 0.0004101 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-squared: 0.9421, Adjusted R-squared: 0.9131
F-statistic: 32.54 on 4 and 8 DF, p-value: 5.363e-05
Analysis of Variance Table
Response: y1
Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 9.1237 4.5619 21.9250 0.0005667
PQ(x1, x2) 2 17.9548 8.9774 43.1469 5.181e-05
Residuals 8 1.6645 0.2081
Lack of fit 4 1.4525 0.3631 6.8516 0.0445322
Pure error 4 0.2120 0.0530
Stationary point of response surface:
x1 x2
0.2706539 0.3821049
Stationary point in original units:
a b
86.35327 176.91052
Eigenanalysis:
eigen() decomposition
$values
[1] -1.00125 -1.37625
$vectors
[,1] [,2]
x1 0 -1
x2 -1 0
par(mfrow=c(1,2))
curve(dnorm(x,mean(funcao$residuals),sd(funcao$residuals)),
from = min(funcao$residuals),to=max(funcao$residuals),
col="blue",lwd=2,ylab = "Densidade",main="Curva Normal")
qqnorm(funcao$residuals,lwd=2,col="turquoise")
qqline(funcao$residuals,col="red",lwd=2)
shapiro.test(funcao$residuals)
Shapiro-Wilk normality test
data: funcao$residuals
W = 0.89607, p-value = 0.1181
ad.test(funcao$residuals)
Anderson-Darling normality test
data: funcao$residuals
A = 0.44205, p-value = 0.2423
par(mfrow=c(1,1))

residualPlot(funcao)

bptest(funcao)
studentized Breusch-Pagan test
data: funcao
BP = 6.3089, df = 4, p-value = 0.1772
dwt(funcao)
lag Autocorrelation D-W Statistic p-value
1 -0.2064809 2.130376 0.944
Alternative hypothesis: rho != 0
dwtest(funcao,alternative = c("two.sided"))
Durbin-Watson test
data: funcao
DW = 2.1304, p-value = 0.9718
alternative hypothesis: true autocorrelation is not 0
bgtest(funcao,order = 1)
Breusch-Godfrey test for serial correlation of order up
to 1
data: funcao
LM test = 0.9643, df = 1, p-value = 0.3261
persp(funcao,~x1+x2,zlab = "y",col=rainbow(510),
contours = "color")

contour(funcao,~x1+x2,image = T)

contour(funcao,~x1+x2,col=topo.colors(12))

funcao2<-rsm(y2~SO(x1,x2),data = DOE)
summary(funcao2)
Call:
rsm(formula = y2 ~ SO(x1, x2), data = DOE)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.00000 0.74197 94.3429 3.960e-12 ***
x1 -1.65533 0.58658 -2.8220 0.0257 *
x2 0.55178 0.58658 0.9407 0.3782
x1:x2 -1.25000 0.82955 -1.5068 0.1756
x1^2 -0.68750 0.62904 -1.0929 0.3106
x2^2 -6.68750 0.62904 -10.6313 1.427e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-squared: 0.9467, Adjusted R-squared: 0.9086
F-statistic: 24.85 on 5 and 7 DF, p-value: 0.0002553
Analysis of Variance Table
Response: y2
Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 24.357 12.178 4.4242 0.05726
TWI(x1, x2) 1 6.250 6.250 2.2706 0.17558
PQ(x1, x2) 2 311.356 155.678 56.5561 4.778e-05
Residuals 7 19.268 2.753
Lack of fit 3 9.268 3.089 1.2358 0.40668
Pure error 4 10.000 2.500
Stationary point of response surface:
x1 x2
-1.3566432 0.1680434
Stationary point in original units:
a b
78.21678 175.84022
Eigenanalysis:
eigen() decomposition
$values
[1] -0.6230873 -6.7519127
$vectors
[,1] [,2]
x1 -0.9947312 0.1025173
x2 0.1025173 0.9947312
funcao2<-rsm(y2~FO(x1,x2)+PQ(x2),data = DOE)
summary(funcao2)
Near-stationary-ridge situation detected -- stationary point altered
Change 'threshold' if this is not what you intend
Call:
rsm(formula = y2 ~ FO(x1, x2) + PQ(x2), data = DOE)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.52174 0.64613 107.5971 2.626e-15 ***
x1 -1.65533 0.63253 -2.6170 0.02795 *
x2 0.55178 0.63253 0.8723 0.40569
x2^2 -6.59783 0.67251 -9.8107 4.194e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-squared: 0.9203, Adjusted R-squared: 0.8937
F-statistic: 34.62 on 3 and 9 DF, p-value: 2.856e-05
Analysis of Variance Table
Response: y2
Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 24.357 12.178 3.8049 0.06345
PQ(x2) 1 308.068 308.068 96.2496 4.194e-06
Residuals 9 28.806 3.201
Lack of fit 5 18.806 3.761 1.5045 0.35674
Pure error 4 10.000 2.500
Stationary point of response surface:
x1 x2
0.00000000 0.04181504
Stationary point in original units:
a b
85.0000 175.2091
Eigenanalysis:
eigen() decomposition
$values
[1] 0.000000 -6.597826
$vectors
[,1] [,2]
x1 -1 0
x2 0 1
curve(dnorm(x,mean(funcao2$residuals),sd(funcao2$residuals)),
from = min(funcao2$residuals),to=max(funcao2$residuals),
col="blue",lwd=2,ylab = "Densidade",main="Curva Normal")

qqnorm(funcao2$residuals,lwd=2,col="turquoise")
qqline(funcao2$residuals,col="red",lwd=2)

shapiro.test(funcao2$residuals)
Shapiro-Wilk normality test
data: funcao2$residuals
W = 0.96382, p-value = 0.8113
ad.test(funcao2$residuals)
Anderson-Darling normality test
data: funcao2$residuals
A = 0.26901, p-value = 0.6184
residualPlot(funcao2)

bptest(funcao2)
studentized Breusch-Pagan test
data: funcao2
BP = 0.44484, df = 3, p-value = 0.9308
dwt(funcao2)
Near-stationary-ridge situation detected -- stationary point altered
Change 'threshold' if this is not what you intend
lag Autocorrelation D-W Statistic p-value
1 -0.2992774 2.428138 0.46
Alternative hypothesis: rho != 0
dwtest(funcao2,alternative = c("two.sided"))
Durbin-Watson test
data: funcao2
DW = 2.4281, p-value = 0.453
alternative hypothesis: true autocorrelation is not 0
bgtest(funcao2,order = 1)
Breusch-Godfrey test for serial correlation of order up
to 1
data: funcao2
LM test = 1.4251, df = 1, p-value = 0.2326
persp(funcao2,~x1+x2,zlab = "y",col=rainbow(510),
contours = "color")

contour(funcao2,~x1+x2,image = T)

contour(funcao2,~x1+x2,col=topo.colors(12))

funcao3<-rsm(y3~FO(x1,x2),data = DOE)
summary(funcao3)
Call:
rsm(formula = y3 ~ FO(x1, x2), data = DOE)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3386.154 44.163 76.6745 3.477e-15 ***
x1 152.604 56.297 2.7107 0.021907 *
x2 229.853 56.297 4.0829 0.002204 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-squared: 0.706, Adjusted R-squared: 0.6472
F-statistic: 12.01 on 2 and 10 DF, p-value: 0.002195
Analysis of Variance Table
Response: y3
Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 608963 304481 12.0090 0.002195
Residuals 10 253545 25355
Lack of fit 6 187825 31304 1.9053 0.277343
Pure error 4 65720 16430
Direction of steepest ascent (at radius 1):
x1 x2
0.5531155 0.8331046
Corresponding increment in original units:
a b
2.765578 4.165523
curve(dnorm(x,mean(funcao3$residuals),sd(funcao3$residuals)),
from = min(funcao3$residuals),to=max(funcao3$residuals),
col="blue",lwd=2,ylab = "Densidade",main="Curva Normal")

qqnorm(funcao3$residuals,lwd=2,col="turquoise")
qqline(funcao3$residuals,col="red",lwd=2)

shapiro.test(funcao3$residuals)
Shapiro-Wilk normality test
data: funcao3$residuals
W = 0.94724, p-value = 0.5571
ad.test(funcao3$residuals)
Anderson-Darling normality test
data: funcao3$residuals
A = 0.331, p-value = 0.4618
residualPlot(funcao3)

bptest(funcao3)
studentized Breusch-Pagan test
data: funcao3
BP = 1.1001, df = 2, p-value = 0.5769
dwt(funcao3)
lag Autocorrelation D-W Statistic p-value
1 0.06979422 1.818395 0.884
Alternative hypothesis: rho != 0
dwtest(funcao3,alternative = c("two.sided"))
Durbin-Watson test
data: funcao3
DW = 1.8184, p-value = 0.8827
alternative hypothesis: true autocorrelation is not 0
bgtest(funcao3,order = 1)
Breusch-Godfrey test for serial correlation of order up
to 1
data: funcao3
LM test = 0.12859, df = 1, p-value = 0.7199
persp(funcao3,~x1+x2,zlab = "y",col=rainbow(510),
contours = "color")

contour(funcao3,~x1+x2,image = T)

contour(funcao3,~x1+x2,col=topo.colors(12))

LS0tDQp0aXRsZTogIlJTTV9CT1hfQkVITktFTiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpFeHBlcmltZW50byBSU00gZGVzaWduIENDRCAtIFJvdGFjaW9uYWw6IExpdnJvIE1vbnRnb21lcnkgKERPRSk6IEV4ZW1wbG8gMTEuMg0KLS0tDQogDQoNCmBgYHtyfQ0KbGlicmFyeShyc20pDQpsaWJyYXJ5KGxtdGVzdCkNCmxpYnJhcnkoY2FyKQ0KbGlicmFyeShub3J0ZXN0KQ0KbGlicmFyeShGckYyKQ0KbGlicmFyeShyaW8pDQpET0U8LSBjY2QoYmFzaXMgPSAyLA0KICAgICAgICAgIGFscGhhID0gInJvdGF0YWJsZSIsDQogICAgICAgICAgbjA9Yyg1LDApLA0KICAgICAgICAgIG9uZWJsb2NrID0gVCwNCiAgICAgICAgICByYW5kb21pemUgPSBGLA0KICAgICAgICAgIGNvZGluZyA9IGxpc3QoeDF+KGEtODUpLzUsDQogICAgICAgICAgICAgICAgICAgICAgICB4Mn4oYi0xNzUpLzUpKQ0KRE9FDQoNCkRPRSR5MTwtYyg3Ni41LDc3LDc4LDc5LjUsNzkuOSw4MC4zLDgwLDc5LjcsNzkuOCwNCiAgICAgICAgICA3NS42LDc4LjQsNzcsNzguNSkNCkRPRSR5MjwtYyg2Miw2MCw2Niw1OSw3Miw2OSw2OCw3MCw3MSw3MSw2OCw1Nyw1OCkNCkRPRSR5MzwtYygyOTQwLDM0NzAsMzY4MCwzODkwLDM0ODAsMzIwMCwzNDEwLDMyOTAsMzUwMCwNCiAgICAgICAgICAzMDIwLDMzNjAsMzE1MCwzNjMwKQ0KRE9FDQpmdW5jYW88LSByc20oeTF+U08oeDEseDIpLGRhdGEgPSBET0UpDQpzdW1tYXJ5KGZ1bmNhbykNCmZ1bmNhbzwtcnNtKHkxfkZPKHgxLHgyKStQUSh4MSx4MiksZGF0YSA9IERPRSkNCnN1bW1hcnkoZnVuY2FvKQ0KcGFyKG1mcm93PWMoMSwyKSkNCmN1cnZlKGRub3JtKHgsbWVhbihmdW5jYW8kcmVzaWR1YWxzKSxzZChmdW5jYW8kcmVzaWR1YWxzKSksDQpmcm9tID0gbWluKGZ1bmNhbyRyZXNpZHVhbHMpLHRvPW1heChmdW5jYW8kcmVzaWR1YWxzKSwNCmNvbD0iYmx1ZSIsbHdkPTIseWxhYiA9ICJEZW5zaWRhZGUiLG1haW49IkN1cnZhIE5vcm1hbCIpDQpxcW5vcm0oZnVuY2FvJHJlc2lkdWFscyxsd2Q9Mixjb2w9InR1cnF1b2lzZSIpDQpxcWxpbmUoZnVuY2FvJHJlc2lkdWFscyxjb2w9InJlZCIsbHdkPTIpDQpzaGFwaXJvLnRlc3QoZnVuY2FvJHJlc2lkdWFscykNCmFkLnRlc3QoZnVuY2FvJHJlc2lkdWFscykNCnBhcihtZnJvdz1jKDEsMSkpDQpyZXNpZHVhbFBsb3QoZnVuY2FvKQ0KYnB0ZXN0KGZ1bmNhbykNCmR3dChmdW5jYW8pDQpkd3Rlc3QoZnVuY2FvLGFsdGVybmF0aXZlID0gYygidHdvLnNpZGVkIikpDQpiZ3Rlc3QoZnVuY2FvLG9yZGVyID0gMSkNCnBlcnNwKGZ1bmNhbyx+eDEreDIsemxhYiA9ICJ5Iixjb2w9cmFpbmJvdyg1MTApLA0KICAgICAgY29udG91cnMgPSAiY29sb3IiKQ0KY29udG91cihmdW5jYW8sfngxK3gyLGltYWdlID0gVCkNCmNvbnRvdXIoZnVuY2FvLH54MSt4Mixjb2w9dG9wby5jb2xvcnMoMTIpKQ0KYGBgDQoNCmBgYHtyfQ0KZnVuY2FvMjwtcnNtKHkyflNPKHgxLHgyKSxkYXRhID0gRE9FKQ0Kc3VtbWFyeShmdW5jYW8yKQ0KZnVuY2FvMjwtcnNtKHkyfkZPKHgxLHgyKStQUSh4MiksZGF0YSA9IERPRSkNCnN1bW1hcnkoZnVuY2FvMikNCmN1cnZlKGRub3JtKHgsbWVhbihmdW5jYW8yJHJlc2lkdWFscyksc2QoZnVuY2FvMiRyZXNpZHVhbHMpKSwNCiAgICAgIGZyb20gPSBtaW4oZnVuY2FvMiRyZXNpZHVhbHMpLHRvPW1heChmdW5jYW8yJHJlc2lkdWFscyksDQogICAgICBjb2w9ImJsdWUiLGx3ZD0yLHlsYWIgPSAiRGVuc2lkYWRlIixtYWluPSJDdXJ2YSBOb3JtYWwiKQ0KcXFub3JtKGZ1bmNhbzIkcmVzaWR1YWxzLGx3ZD0yLGNvbD0idHVycXVvaXNlIikNCnFxbGluZShmdW5jYW8yJHJlc2lkdWFscyxjb2w9InJlZCIsbHdkPTIpDQpzaGFwaXJvLnRlc3QoZnVuY2FvMiRyZXNpZHVhbHMpDQphZC50ZXN0KGZ1bmNhbzIkcmVzaWR1YWxzKQ0KcmVzaWR1YWxQbG90KGZ1bmNhbzIpDQpicHRlc3QoZnVuY2FvMikNCmR3dChmdW5jYW8yKQ0KZHd0ZXN0KGZ1bmNhbzIsYWx0ZXJuYXRpdmUgPSBjKCJ0d28uc2lkZWQiKSkNCmJndGVzdChmdW5jYW8yLG9yZGVyID0gMSkNCnBlcnNwKGZ1bmNhbzIsfngxK3gyLHpsYWIgPSAieSIsY29sPXJhaW5ib3coNTEwKSwNCiAgICAgIGNvbnRvdXJzID0gImNvbG9yIikNCmNvbnRvdXIoZnVuY2FvMix+eDEreDIsaW1hZ2UgPSBUKQ0KY29udG91cihmdW5jYW8yLH54MSt4Mixjb2w9dG9wby5jb2xvcnMoMTIpKQ0KYGBgDQpgYGB7cn0NCmZ1bmNhbzM8LXJzbSh5M35GTyh4MSx4MiksZGF0YSA9IERPRSkNCnN1bW1hcnkoZnVuY2FvMykNCmN1cnZlKGRub3JtKHgsbWVhbihmdW5jYW8zJHJlc2lkdWFscyksc2QoZnVuY2FvMyRyZXNpZHVhbHMpKSwNCiAgICAgIGZyb20gPSBtaW4oZnVuY2FvMyRyZXNpZHVhbHMpLHRvPW1heChmdW5jYW8zJHJlc2lkdWFscyksDQogICAgICBjb2w9ImJsdWUiLGx3ZD0yLHlsYWIgPSAiRGVuc2lkYWRlIixtYWluPSJDdXJ2YSBOb3JtYWwiKQ0KcXFub3JtKGZ1bmNhbzMkcmVzaWR1YWxzLGx3ZD0yLGNvbD0idHVycXVvaXNlIikNCnFxbGluZShmdW5jYW8zJHJlc2lkdWFscyxjb2w9InJlZCIsbHdkPTIpDQpzaGFwaXJvLnRlc3QoZnVuY2FvMyRyZXNpZHVhbHMpDQphZC50ZXN0KGZ1bmNhbzMkcmVzaWR1YWxzKQ0KcmVzaWR1YWxQbG90KGZ1bmNhbzMpDQpicHRlc3QoZnVuY2FvMykNCmR3dChmdW5jYW8zKQ0KZHd0ZXN0KGZ1bmNhbzMsYWx0ZXJuYXRpdmUgPSBjKCJ0d28uc2lkZWQiKSkNCmJndGVzdChmdW5jYW8zLG9yZGVyID0gMSkNCnBlcnNwKGZ1bmNhbzMsfngxK3gyLHpsYWIgPSAieSIsY29sPXJhaW5ib3coNTEwKSwNCiAgICAgIGNvbnRvdXJzID0gImNvbG9yIikNCmNvbnRvdXIoZnVuY2FvMyx+eDEreDIsaW1hZ2UgPSBUKQ0KY29udG91cihmdW5jYW8zLH54MSt4Mixjb2w9dG9wby5jb2xvcnMoMTIpKQ0KYGBgDQoNCg==