table4a_long <- table4a %>%
pivot_longer(cols = c('1999' ,'2000' ),
names_to = "year" ,
values_to = "cases")
table4a_long %>%
pivot_wider(names_from = year,
values_from = cases)
## # A tibble: 3 × 3
## country `1999` `2000`
## <chr> <dbl> <dbl>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
##Seperating and Uniting ### seperate a column
table3_sep <- table3 %>%
separate(col = rate,into = c("cases", "population"))
table3_sep %>%
unite(col = "rate", cases:population, sep = "/",)
## # A tibble: 6 × 3
## country year rate
## <chr> <dbl> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583