Rows: 49
Columns: 12
$ Species <chr> "Africangiantpouchedrat", "Americanopos…
$ TotalSleep <dbl> 8.3, 19.4, 12.5, 9.8, 19.7, 6.2, 14.5, …
$ BodyWt <dbl> 1.00, 1.70, 3.39, 10.55, 0.02, 160.00, …
$ LNBodyWt <dbl> 0.00, 0.53, 1.22, 2.36, -3.77, 5.08, 1.…
$ BrainWt <dbl> 6.6, 6.3, 44.5, 179.5, 0.3, 169.0, 25.6…
$ LNBrainWt <dbl> 1.89, 1.84, 3.80, 5.19, -1.20, 5.13, 3.…
$ LifeSpan <dbl> 4.5, 5.0, 14.0, 27.0, 19.0, 30.4, 28.0,…
$ LNLifeSpan <dbl> 1.50, 1.61, 2.64, 3.30, 2.94, 3.41, 3.3…
$ Gestation <dbl> 42, 12, 60, 180, 35, 392, 63, 230, 112,…
$ PredF <fct> 3, 2, 1, 4, 1, 4, 1, 1, 5, 5, 5, 1, 2, …
$ ExposF <fct> 1, 1, 1, 4, 1, 5, 2, 1, 4, 5, 5, 1, 2, …
$ DangrF <fct> 3, 1, 1, 4, 1, 4, 1, 1, 4, 5, 5, 1, 2, …
Comments about Model Selection Methods
Common Practice: Try multiple methods to develop preliminary final model and then tweak as needed.
Steps for model selection using multiple methods are similar to the steps for Backward Elimination (Week 8 Lectures)
Not all steps are ALWAYS required. It depends on how complex the data are.
In the following example, we only need to do part of Step 1 plus Steps 2, 3, and 6.
For Step 1, we only need to examine correlations.
In this case, Step 7 will be apparent.
We can add model estimates to data for future interpretation (Step 8)