packages <- c("tidyverse", "broom", "fst", "modelsummary")
new_packages <- packages[!(packages %in% installed.packages()[,"Package"])]
if(length(new_packages)) install.packages(new_packages)
lapply(packages, library, character.only = TRUE) 
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## [[1]]
##  [1] "lubridate" "forcats"   "stringr"   "dplyr"     "purrr"     "readr"    
##  [7] "tidyr"     "tibble"    "ggplot2"   "tidyverse" "stats"     "graphics" 
## [13] "grDevices" "utils"     "datasets"  "methods"   "base"     
## 
## [[2]]
##  [1] "broom"     "lubridate" "forcats"   "stringr"   "dplyr"     "purrr"    
##  [7] "readr"     "tidyr"     "tibble"    "ggplot2"   "tidyverse" "stats"    
## [13] "graphics"  "grDevices" "utils"     "datasets"  "methods"   "base"     
## 
## [[3]]
##  [1] "fst"       "broom"     "lubridate" "forcats"   "stringr"   "dplyr"    
##  [7] "purrr"     "readr"     "tidyr"     "tibble"    "ggplot2"   "tidyverse"
## [13] "stats"     "graphics"  "grDevices" "utils"     "datasets"  "methods"  
## [19] "base"     
## 
## [[4]]
##  [1] "modelsummary" "fst"          "broom"        "lubridate"    "forcats"     
##  [6] "stringr"      "dplyr"        "purrr"        "readr"        "tidyr"       
## [11] "tibble"       "ggplot2"      "tidyverse"    "stats"        "graphics"    
## [16] "grDevices"    "utils"        "datasets"     "methods"      "base"

Task 1

Graph the histogram distribution using the populist scale (as we did in the tutorial) for the country of Sweden. What do you note?

sweden_data <- read.fst("sweden_data.fst")
sweden_data$trstplt <- ifelse(sweden_data$trstplt > 10, NA, sweden_data$trstplt)
sweden_data$trstprl <- ifelse(sweden_data$trstprl > 10, NA, sweden_data$trstprl)
sweden_data$trstprt <- ifelse(sweden_data$trstprt > 10, NA, sweden_data$trstprt) 

sweden_data$trust <- scales::rescale(sweden_data$trstplt + sweden_data$trstprl + sweden_data$trstprt, na.rm = TRUE, to = c(0, 100)) 

sweden_data$populist <- scales::rescale(sweden_data$trust, na.rm = TRUE, to=c(100,0))
ggplot(sweden_data, aes(x = populist)) +
  geom_histogram(bins = 30, fill = "blue", color = "black") +
  theme_minimal() +
  labs(title = "Distribution of Populist Scale for Sweden",
       x = "Populist Scale",
       y = "Count")
## Warning: Removed 2503 rows containing non-finite values (`stat_bin()`).

Task 1 answer:

The populist scale for Sweden is interesting because when graphed it represents a bell curve shape, an example of normal data distribution. The majority of the data falls within the middle percentile, peaking at around 50% on the populist scale. Overall, it can be understood from this graph that on average Swedish people identify as populists to a moderate degree (close to 50%).

Task 2

Run a linear regression with populist attitudes as the outcome, educational attainment (recoded as a binary “BA or more” and “No BA”), and using the Swedish data. Print the intercept and coefficients only and interpret. Then do a tidy model table displaying the p-value (with digits = 3) and interpret.

sweden_data <- read.fst("sweden_data.fst")
coefficients_sweden <- coef(sweden_data)
print(coefficients_sweden)
## NULL

Task 3

Now using the Italian dataset and the authoritarian values scale (as we did in the tutorial), graph the average by survey year. Interpret.

italy_data <- read.fst("italy_data.fst")
## Creates an authoritarian values scale based on human modules items (can also do libertarian value scale)
italy_data <- italy_data %>%
  mutate(behave = ipbhprp,
         secure = impsafe,
         safety = ipstrgv,
         tradition = imptrad,
         rules = ipfrule) %>%
  mutate(across(c("behave", "secure", "safety", "tradition", "rules"),
                ~ na_if(.x, 7) %>% na_if(8) %>% na_if(9))) %>%
  # Apply the reverse coding
  mutate(across(c("behave", "secure", "safety", "tradition", "rules"), ~ 7 - .x ))

# Now you can calculate 'schwartzauth' after the NA recoding
italy_data$auth <- scales::rescale(italy_data$behave + 
                      italy_data$secure + 
                      italy_data$safety + 
                      italy_data$tradition + 
                      italy_data$rules, to=c(0,100), na.rm=TRUE)


iatly_data <- italy_data %>% filter(!is.na(auth))
table(italy_data$secure)
## 
##    1    2    3    4    5    6 
##   60  151  651 1932 3001 2970
table(italy_data$auth)
## 
##   0  12  16  20  24  28  32  36  40  44  48  52  56  60  64  68  72  76  80  84 
##   7   4   4   9  13  20  27  57 113 155 163 323 367 596 647 789 823 897 992 733 
##  88  92  96 100 
## 632 465 299 297
ggplot(italy_data, aes(x = auth)) +
  geom_histogram(bins = 30, fill = "blue", color = "black") +
  theme_minimal() +
  labs(title = "Distribution of Authoritarian Scale for Italy",
       x = "Authoritarian Scale",
       y = "Count")
## Warning: Removed 1746 rows containing non-finite values (`stat_bin()`).

nrow(italy_data)
## [1] 10178
italy_data$year <- NA
replacements <- c(2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020)
for(i in 1:10){
  italy_data$year[italy_data$essround == i] <- replacements[i]
}
auth_avg <- italy_data %>%
  group_by(year) %>%
  summarize(auth_avg = mean(auth, na.rm = TRUE)) 

plot_auth <- ggplot(auth_avg, aes(x = year, y = auth_avg)) +
  geom_point(aes(color = auth_avg), alpha = 1.0) + 
  geom_line(aes(group = 1), color = "blue", linetype = "dashed") +  
  labs(title = "Authoritarian Scale Average by Year (Italy)",
       x = "Survey Year",
       y = "Authoritarian Scale Average") +
  theme_minimal() +
  theme(legend.position = "none") +
  scale_y_continuous(limits = c(0, 100))

print(plot_auth)
## Warning: Removed 1 rows containing missing values (`geom_point()`).
## Warning: Removed 1 row containing missing values (`geom_line()`).

Task 3 answer:

The yearly average for the authoritarian values of Italians has remained consistent for years, at around 75% on the authoritarian value scale. This indicates that Italians have generally not viewed authoritarianism in a negative way, and tend to have authoritarian tendencies given that on a yearly basis average they scored close to 75% or at 75% on the scale.

Task 4

Now run a linear regression model, using the modelsummary package, with authoritarian values as the outcome, and generations as the predictor/potential explanatory variable, and using the Italian data again. Rename the coefficients using the coef_rename function. Interpret the coefficients, whether they are statistically significant, and the adjusted R-squared.

italy_data <- read.fst("italy_data.fst")
italy_data <- italy_data %>%
  mutate(
  
    # Recoding age, setting 999 to NA
    age = ifelse(agea == 999, NA, agea),

    # Recoding cohort variable, setting years before 1930 and after 2000 to NA
    cohort = ifelse(yrbrn < 1930 | yrbrn > 2000, NA, yrbrn),

    # Recoding generational cohorts based on year of birth
    gen = case_when(
      yrbrn %in% 1900:1945 ~ "1",
      yrbrn %in% 1946:1964 ~ "2",
      yrbrn %in% 1965:1979 ~ "3",
      yrbrn %in% 1980:1996 ~ "4",
      TRUE ~ as.character(cohort)  # Keeping other values as character if they do not fit the ranges
    ),

    # Converting cohort to a factor with labels
    gen = factor(gen,
                 levels = c("1", "2", "3", "4"),
                 labels = c("Interwar", "Baby Boomers", "Gen X", "Millennials"))
  ) 

Task 5

Now visualize, using the modelplot() function from the modelsummary package, coefficient estimates and 95% confidence intervals for the following three models:

Model 1 = populist attitudes scale as the outcome; left/right as the single predictor (omitting moderates as we did in the tutorial), and using data for Greece.

Model 2 = populist attitudes scale as the outcome; gender as the single predictor, and using data for Greece.

Model 3 = populist attitudes scale as the outcome; generations as the single predictor (using the four generational category recode we did in the tutorial), and using data for Greece. Interpret.

greece_data <- read.fst("greece_data.fst") 
greece_data <- greece_data %>%
  mutate(
    # Recoding gender
    gndr = case_when(
      gndr == 1 ~ "Male",
      gndr == 2 ~ "Female",
      gndr == 9 ~ NA_character_,
      TRUE ~ as.character(gndr)
    ),

 # Recoding education
    educ.ba = case_when(
      essround < 5 & edulvla == 5 ~ "BA or more",
      essround >= 5 & edulvlb > 600 ~ "BA or more",
      TRUE ~ "No BA"
    ),
    
    # Handle NAs for education levels
    edulvla = ifelse(edulvla %in% c(77, 88, 99), NA_integer_, edulvla),
    edulvlb = ifelse(edulvlb %in% c(5555, 7777, 8888), NA_integer_, edulvlb),
    
    # Explicitly making 'No BA' the reference category
    educ.ba = factor(educ.ba, levels = c("No BA", "BA or more")),

    # Recoding age, setting 999 to NA
    age = ifelse(agea == 999, NA, agea),

    # Recoding cohort variable, setting years before 1930 and after 2000 to NA
    cohort = ifelse(yrbrn < 1930 | yrbrn > 2000, NA, yrbrn),

    # Recoding generational cohorts based on year of birth
    gen = case_when(
      yrbrn %in% 1900:1945 ~ "1",
      yrbrn %in% 1946:1964 ~ "2",
      yrbrn %in% 1965:1979 ~ "3",
      yrbrn %in% 1980:1996 ~ "4",
      TRUE ~ as.character(cohort)  # Keeping other values as character if they do not fit the ranges
    ),

    # Converting cohort to a factor with labels
    gen = factor(gen,
                 levels = c("1", "2", "3", "4"),
                 labels = c("Interwar", "Baby Boomers", "Gen X", "Millennials"))
  )
table(greece_data$gen)
## 
##     Interwar Baby Boomers        Gen X  Millennials 
##         2978         3484         3498         2330