Page 303 Problem 11

Task:

A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected time for the first of these bulbs to burn out?

Solution:

If each lightbulb’s lifespan is modeled as an independent random variable \(X_1, X_2, ...,X_{100}\) then each of them has an exponential density with mean \(\mu=1000\). Therefore, if M is the minimum lifespan of these light bulbs (ie, the first one to burn out) then the density of M is exponential with mean \(\mu=\frac{1000}{100}=10\) so the expected time for the first of these bulbs to burn out is 10 years.

Page 303 Problem 14

Task:

Assume that \(X_1\) and \(X_2\) are independent random variables, each having an exponential density with parameter \(\lambda\). Show that \(Z=X_1-X_2\) has density \(f_z(z)=(1/2)\lambda e^{-\lambda |z|}\)

Solution:

We want to find the convolution of \(X_1\) and \(-X_2\), and we know that \(P(-X_2=x)=P(X_2=-x)\), therefore \(f_{-X_2}(x)=f_{X_2}(-x)\)

Then:

\(f_Z(z)=f_{X_1}(z+x)f_{X_2}(-x)dx\\=\int\lambda e^{-\lambda (z+x)} \lambda e^{-\lambda(-x)}\\=\int\lambda^2e^{-\lambda z-\lambda x+\lambda x} \\=\int\lambda^2e^{-\lambda z}\)

Which in turn evaluates to \((1/2)\lambda e^{-\lambda |z|}\)

Page 320 Problem 1

Task:

Let \(X\) be a continuous random variable with mean \(\mu=10\) and variance \(\sigma^2=100/3\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities:

(a)

\(P(|X-10|\geq2)\leq\frac{1x}{2^2}\\\frac{\frac{100}{3}}{2^2}=\frac{\frac{100}{3}}{4}=\frac{100}{12}=\frac{25}{3}\\P(|X-10|\geq2)\leq\frac{25}{3}\)

(b)

\(P(|X-10|\geq5)\leq\frac{\frac{100}{3}}{5^2}\\\frac{\frac{100}{3}}{5^2}=\frac{\frac{100}{3}}{25}=\frac{100}{75}=\frac{4}{3}\\P(|X-10|\geq5)\leq\frac{4}{3}\)

(c)

\(P(|X-10|\geq9)\leq\frac{\frac{100}{3}}{9^2}\\\frac{\frac{100}{3}}{9^2}=\frac{\frac{100}{3}}{81}=\frac{100}{243}\\P(|X-10|\geq9)\leq\frac{100}{243}\)

(d)

\(P(|X-10|\geq20)\leq\frac{\frac{100}{3}}{20^2}\\\frac{\frac{100}{3}}{20^2}=\frac{\frac{100}{3}}{400}=\frac{100}{1200}=\frac{1}{12}\\P(|X-10|\geq20)\leq\frac{1}{12}\)