Note that \(X_i \sim exp(\lambda_i )\), for \(i = 1,2,3 ...n\), and \(X_1 , X_2 ... X_n\) are mutually independent random variables, then \[min \{ X_1, X_2 ... X_n \} \sim exp( \Sigma_{i=1}^{n} \lambda_i)\].
Therefore, the expected value of the above probability distribution \[ E[min\{X_1,X_2 ...X_{100}\}] = \frac{1}{ \Sigma_{i=1}^{100} \lambda_i} = \frac{1}{100\lambda} = \frac{1}{100\cdot\frac{1}{1000}}=10\].
ANS. The expected time for the first of these bulbs to burnout is 10.
\[ f_Z(z) = \int_{-\infty}^{\infty}f(z+t)f(t)dt \] \[ f_Z(z) = \int_{-\infty}^{\infty}\lambda^2 e^{-\lambda (z+t)}e^{-\lambda t}dt \] \[=\int_{-\infty}^{\infty}\lambda^2 e^{ -\lambda ( 2t+ z)}dt \] When \(z > 0\) \[ = - \frac{1}{2} \lambda e^{-\lambda(2t+z)} \bigr|^{\infty}_{0} =\frac{1}{2} \lambda e^{-\lambda z} \] When \(z< 0\) \[ = - \frac{1}{2} \lambda e^{-\lambda(2t+z)} \bigr|^{0}_{-\infty} =-\frac{1}{2} \lambda e^{-\lambda z} \]
1 Let X be a continuous random variable with mean µ = 10 and variance σ2 = 100/3. Using Chebyshev’s Inequality, find an upper bound for the following probabilities. (a) P(|X −10| ≥ 2). (b) P(|X −10| ≥ 5). (c) P(|X −10| ≥ 9). (d) P(|X −10| ≥ 20).
Chebyshev’s Inequality Formula:
\(Pr(|X-\mu|\ge k\sigma) \le \tfrac{1}{k^2} \\ X = random \ variable \\ \mu = expected \ value \\ \sigma = standard \ deviation \\ k = number \ of \ standard \ deviations \ from \ the \ mean\)
Ans.
## Standard Deviation = sigma
mu = 10
sigmasquare = 100/3
sigma= sqrt(sigmasquare)
\(A)\ P(|X-10| \ge 2)\)
k_A = 2/sigma
bound_A = min(1/k_A^2, 1)
bound_A
## [1] 1
fractions(bound_A)
## [1] 1
The upper bound is 1
\(B)\ P(|X-10| \ge 5)\)
k_B = 5/sigma
bound_B = min(1/k_B^2, 1)
bound_B
## [1] 1
fractions(bound_B)
## [1] 1
The upper bound is 1
\(C)\ P(|X-10|) \ge 9\)
k_C = 9/sigma
bound_C = min(1/k_C^2, 1)
bound_C
## [1] 0.4115226
fractions(bound_C)
## [1] 100/243
The upper bound is 0.4115226 or \(\tfrac{100}{243}\)
\(D)\ P(|X-10| \ge 20)\)
k_D = 20/sigma
bound_D = min(1/k_D^2, 1)
bound_D
## [1] 0.08333333
fractions(bound_D)
## [1] 1/12
The upper bound is 0.0833333 or \(\tfrac{1}{12}\)