Exercise 11
A company buys 100 lightbulbs, each of which has an exponential
lifetime of 1000 hours. What is the expected time for the first of these
bulbs to burn out?
To solve this problem, we can use the concept of exponential
distribution and the memorylessness property of exponential random
variables.
Let \(X_i\) be the lifetime of the
\(i^{th}\) lightbulb, which follows an
exponential distribution with a rate parameter \(\lambda = \frac{1}{1000}\) (since the mean
lifetime is 1000 hours).
The expected time for the first lightbulb to burn out (the expected
value of the minimum of the lifetimes of all 100 bulbs) is given by the
sum of the individual lifetimes:
\[ E(X_{\text{min}}) = E(X_1 + X_2 +
\ldots + X_{100}) \]
Since the lightbulbs have independent lifetimes, the expected value
of the sum is the sum of the expected values:
\[ E(X_{\text{min}}) = E(X_1) + E(X_2) +
\ldots + E(X_{100}) \]
Each individual lightbulb has the same exponential distribution, so
their expected lifetimes are all the same:
\[ E(X_{\text{min}}) = 100 \cdot E(X_1)
\]
We know that the expected value of an exponential distribution with
rate parameter \(\lambda\) is \(\frac{1}{\lambda}\). Therefore:
\[ E(X_1) = \frac{1}{\lambda} =
\frac{1}{\frac{1}{1000}} = 1000 \]
So, the expected time for the first lightbulb to burn out is 1000
hours.
Exercise 14
Assume that X1 and X2 are independent random variables, each having
an exponential density with parameter ‚. Show that Z = X1 - X2 has
density: fZ(z)=(λ2)e−λ|z|
Assume that \(X_1\) and \(X_2\) are independent random variables,
each having an exponential density with parameter \(\lambda\). We want to show that \(Z = X_1 - X_2\) has density given by:
\[ f_Z(z) = \frac{\lambda}{2} e^{-\lambda
|z|} \]
To derive this, let’s first find the joint PDF of \(X_1\) and \(X_2\). Since \(X_1\) and \(X_2\) are independent, the joint PDF \(f_{X_1,X_2}(x_1,x_2)\) is the product of
their individual PDFs:
\[ f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)
\times f_{X_2}(x_2) = \lambda^2 e^{-\lambda (x_1 + x_2)} \]
Now, let \(Z = X_1 - X_2\). We want
to find the PDF of \(Z\), denoted as
\(f_Z(z)\). We’ll use the convolution
formula to find \(f_Z(z)\):
\[ f_Z(z) = \int_{-\infty}^{\infty}
f_{X_1,X_2}(x, x+z) \, dx \]
Substituting the joint PDF \(f_{X_1,X_2}(x_1,x_2) = \lambda^2 e^{-\lambda (x_1
+ x_1 + z)}\), we get:
\[ f_Z(z) = \int_{-\infty}^{\infty}
\lambda^2 e^{-\lambda (x_1 + x_1 + z)} \, dx_1 \]
\[ = \lambda^2 e^{-\lambda z}
\int_{-\infty}^{\infty} e^{-2\lambda x_1} \, dx_1 \]
\[ = \lambda^2 e^{-\lambda z}
\left[-\frac{1}{2\lambda} e^{-2\lambda x_1}\right]_{-\infty}^{\infty}
\]
\[ = \frac{\lambda}{2} e^{-\lambda z}
\left(0 - (-1)\right) \]
\[ = \frac{\lambda}{2} e^{-\lambda z}
\]
Therefore, the PDF of \(Z = X_1 -
X_2\) is \(f_Z(z) = \frac{\lambda}{2}
e^{-\lambda |z|}\). This matches the form \(f_Z(z) = \lambda^2 e^{-\lambda |z|}\), as
expected.
Exercise 1
Let X be a continuous random variable with mean µ = 10 and variance σ
2 = 100/3. Using Chebyshev’s Inequality, find an upper bound for the
following probabilities. 8.2. CONTINUOUS RANDOM VARIABLES 321 (a) P(|X −
10| ≥ 2). (b) P(|X − 10| ≥ 5). (c) P(|X − 10| ≥ 9). (d) P(|X − 10| ≥
20).
\(P(|X-10| \geq 2) \leq
\frac{1}{{\left(\frac{2\sqrt{3}}{10}\right)}^2} =
\frac{1}{\left(\frac{2\sqrt{3}}{10}\right)^2} =
\frac{1}{{\left(\frac{2\sqrt{3}}{10}\right)} \times
{\left(\frac{2\sqrt{3}}{10}\right)}} = \frac{1}{\frac{4 \times 3}{100}}
= \frac{100}{12} = \frac{25}{3}\)
\(P(|X-10| \geq 5) \leq
\frac{1}{{\left(\frac{5\sqrt{3}}{10}\right)}^2} =
\frac{1}{\left(\frac{5\sqrt{3}}{10}\right)^2} =
\frac{1}{{\left(\frac{5\sqrt{3}}{10}\right)} \times
{\left(\frac{5\sqrt{3}}{10}\right)}} = \frac{1}{\frac{25 \times 3}{100}}
= \frac{100}{75} = \frac{4}{3}\)
\(P(|X-10| \geq 9) \leq
\frac{1}{{\left(\frac{9\sqrt{3}}{10}\right)}^2} =
\frac{1}{\left(\frac{9\sqrt{3}}{10}\right)^2} =
\frac{1}{{\left(\frac{9\sqrt{3}}{10}\right)} \times
{\left(\frac{9\sqrt{3}}{10}\right)}} = \frac{1}{\frac{81 \times 3}{100}}
= \frac{100}{243}\)
\(P(|X-10| \geq 20) \leq
\frac{1}{(2\sqrt{3})^2} = \frac{1}{4 \times 3} =
\frac{1}{12}\)
LS0tDQp0aXRsZTogIkRhdGEgNjA1IEhvbWV3b3JrIDgiDQphdXRob3I6ICJMYXVyYSBQIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQoNCg0KIyMjIEV4ZXJjaXNlIDExIA0KQSBjb21wYW55IGJ1eXMgMTAwIGxpZ2h0YnVsYnMsIGVhY2ggb2Ygd2hpY2ggaGFzIGFuIGV4cG9uZW50aWFsIGxpZmV0aW1lIG9mIDEwMDAgaG91cnMuIFdoYXQgaXMgdGhlIGV4cGVjdGVkIHRpbWUgZm9yIHRoZSBmaXJzdCBvZiB0aGVzZSBidWxicyB0byBidXJuIG91dD8NCg0KDQpUbyBzb2x2ZSB0aGlzIHByb2JsZW0sIHdlIGNhbiB1c2UgdGhlIGNvbmNlcHQgb2YgZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uIGFuZCB0aGUgbWVtb3J5bGVzc25lc3MgcHJvcGVydHkgb2YgZXhwb25lbnRpYWwgcmFuZG9tIHZhcmlhYmxlcy4NCg0KTGV0IFwoIFhfaSBcKSBiZSB0aGUgbGlmZXRpbWUgb2YgdGhlIFwoIGlee3RofSBcKSBsaWdodGJ1bGIsIHdoaWNoIGZvbGxvd3MgYW4gZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uIHdpdGggYSByYXRlIHBhcmFtZXRlciBcKCBcbGFtYmRhID0gXGZyYWN7MX17MTAwMH0gXCkgKHNpbmNlIHRoZSBtZWFuIGxpZmV0aW1lIGlzIDEwMDAgaG91cnMpLg0KDQpUaGUgZXhwZWN0ZWQgdGltZSBmb3IgdGhlIGZpcnN0IGxpZ2h0YnVsYiB0byBidXJuIG91dCAodGhlIGV4cGVjdGVkIHZhbHVlIG9mIHRoZSBtaW5pbXVtIG9mIHRoZSBsaWZldGltZXMgb2YgYWxsIDEwMCBidWxicykgaXMgZ2l2ZW4gYnkgdGhlIHN1bSBvZiB0aGUgaW5kaXZpZHVhbCBsaWZldGltZXM6DQoNClxbIEUoWF97XHRleHR7bWlufX0pID0gRShYXzEgKyBYXzIgKyBcbGRvdHMgKyBYX3sxMDB9KSBcXQ0KDQpTaW5jZSB0aGUgbGlnaHRidWxicyBoYXZlIGluZGVwZW5kZW50IGxpZmV0aW1lcywgdGhlIGV4cGVjdGVkIHZhbHVlIG9mIHRoZSBzdW0gaXMgdGhlIHN1bSBvZiB0aGUgZXhwZWN0ZWQgdmFsdWVzOg0KDQpcWyBFKFhfe1x0ZXh0e21pbn19KSA9IEUoWF8xKSArIEUoWF8yKSArIFxsZG90cyArIEUoWF97MTAwfSkgXF0NCg0KRWFjaCBpbmRpdmlkdWFsIGxpZ2h0YnVsYiBoYXMgdGhlIHNhbWUgZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uLCBzbyB0aGVpciBleHBlY3RlZCBsaWZldGltZXMgYXJlIGFsbCB0aGUgc2FtZToNCg0KXFsgRShYX3tcdGV4dHttaW59fSkgPSAxMDAgXGNkb3QgRShYXzEpIFxdDQoNCldlIGtub3cgdGhhdCB0aGUgZXhwZWN0ZWQgdmFsdWUgb2YgYW4gZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uIHdpdGggcmF0ZSBwYXJhbWV0ZXIgXCggXGxhbWJkYSBcKSBpcyBcKCBcZnJhY3sxfXtcbGFtYmRhfSBcKS4gVGhlcmVmb3JlOg0KDQpcWyBFKFhfMSkgPSBcZnJhY3sxfXtcbGFtYmRhfSA9IFxmcmFjezF9e1xmcmFjezF9ezEwMDB9fSA9IDEwMDAgXF0NCg0KU28sIHRoZSBleHBlY3RlZCB0aW1lIGZvciB0aGUgZmlyc3QgbGlnaHRidWxiIHRvIGJ1cm4gb3V0IGlzIDEwMDAgaG91cnMuDQoNCg0KIyMjIEV4ZXJjaXNlIDE0DQpBc3N1bWUgdGhhdCBYMSBhbmQgWDIgYXJlIGluZGVwZW5kZW50IHJhbmRvbSB2YXJpYWJsZXMsIGVhY2ggaGF2aW5nIGFuIGV4cG9uZW50aWFsIGRlbnNpdHkgd2l0aCBwYXJhbWV0ZXIg4oCaLiBTaG93IHRoYXQgWiA9IFgxIC0gWDIgaGFzIGRlbnNpdHk6IGZaKHopPSjOuzIpZeKIks67fHp8DQoNCg0KQXNzdW1lIHRoYXQgXChYXzFcKSBhbmQgXChYXzJcKSBhcmUgaW5kZXBlbmRlbnQgcmFuZG9tIHZhcmlhYmxlcywgZWFjaCBoYXZpbmcgYW4gZXhwb25lbnRpYWwgZGVuc2l0eSB3aXRoIHBhcmFtZXRlciBcKCBcbGFtYmRhIFwpLiBXZSB3YW50IHRvIHNob3cgdGhhdCBcKCBaID0gWF8xIC0gWF8yIFwpIGhhcyBkZW5zaXR5IGdpdmVuIGJ5Og0KDQpcWyBmX1ooeikgPSBcZnJhY3tcbGFtYmRhfXsyfSBlXnstXGxhbWJkYSB8enx9IFxdDQoNClRvIGRlcml2ZSB0aGlzLCBsZXQncyBmaXJzdCBmaW5kIHRoZSBqb2ludCBQREYgb2YgXChYXzFcKSBhbmQgXChYXzJcKS4gU2luY2UgXChYXzFcKSBhbmQgXChYXzJcKSBhcmUgaW5kZXBlbmRlbnQsIHRoZSBqb2ludCBQREYgXChmX3tYXzEsWF8yfSh4XzEseF8yKVwpIGlzIHRoZSBwcm9kdWN0IG9mIHRoZWlyIGluZGl2aWR1YWwgUERGczoNCg0KXFsgZl97WF8xLFhfMn0oeF8xLHhfMikgPSBmX3tYXzF9KHhfMSkgXHRpbWVzIGZfe1hfMn0oeF8yKSA9IFxsYW1iZGFeMiBlXnstXGxhbWJkYSAoeF8xICsgeF8yKX0gXF0NCg0KTm93LCBsZXQgXChaID0gWF8xIC0gWF8yXCkuIFdlIHdhbnQgdG8gZmluZCB0aGUgUERGIG9mIFwoWlwpLCBkZW5vdGVkIGFzIFwoZl9aKHopXCkuIFdlJ2xsIHVzZSB0aGUgY29udm9sdXRpb24gZm9ybXVsYSB0byBmaW5kIFwoZl9aKHopXCk6DQoNClxbIGZfWih6KSA9IFxpbnRfey1caW5mdHl9XntcaW5mdHl9IGZfe1hfMSxYXzJ9KHgsIHgreikgXCwgZHggXF0NCg0KU3Vic3RpdHV0aW5nIHRoZSBqb2ludCBQREYgXCggZl97WF8xLFhfMn0oeF8xLHhfMikgPSBcbGFtYmRhXjIgZV57LVxsYW1iZGEgKHhfMSArIHhfMSArIHopfSBcKSwgd2UgZ2V0Og0KDQpcWyBmX1ooeikgPSBcaW50X3stXGluZnR5fV57XGluZnR5fSBcbGFtYmRhXjIgZV57LVxsYW1iZGEgKHhfMSArIHhfMSArIHopfSBcLCBkeF8xIFxdDQoNClxbID0gXGxhbWJkYV4yIGVeey1cbGFtYmRhIHp9IFxpbnRfey1caW5mdHl9XntcaW5mdHl9IGVeey0yXGxhbWJkYSB4XzF9IFwsIGR4XzEgXF0NCg0KXFsgPSBcbGFtYmRhXjIgZV57LVxsYW1iZGEgen0gXGxlZnRbLVxmcmFjezF9ezJcbGFtYmRhfSBlXnstMlxsYW1iZGEgeF8xfVxyaWdodF1fey1caW5mdHl9XntcaW5mdHl9IFxdDQoNClxbID0gXGZyYWN7XGxhbWJkYX17Mn0gZV57LVxsYW1iZGEgen0gXGxlZnQoMCAtICgtMSlccmlnaHQpIFxdDQoNClxbID0gXGZyYWN7XGxhbWJkYX17Mn0gZV57LVxsYW1iZGEgen0gXF0NCg0KVGhlcmVmb3JlLCB0aGUgUERGIG9mIFwoWiA9IFhfMSAtIFhfMlwpIGlzIFwoIGZfWih6KSA9IFxmcmFje1xsYW1iZGF9ezJ9IGVeey1cbGFtYmRhIHx6fH0gXCkuIFRoaXMgbWF0Y2hlcyB0aGUgZm9ybSBcKGZfWih6KSA9IFxsYW1iZGFeMiBlXnstXGxhbWJkYSB8enx9XCksIGFzIGV4cGVjdGVkLg0KDQoNCg0KIyMjIEV4ZXJjaXNlIDENCkxldCBYIGJlIGEgY29udGludW91cyByYW5kb20gdmFyaWFibGUgd2l0aCBtZWFuIMK1ID0gMTAgYW5kIHZhcmlhbmNlDQrPgyAyID0gMTAwLzMuIFVzaW5nIENoZWJ5c2hlduKAmXMgSW5lcXVhbGl0eSwgZmluZCBhbiB1cHBlciBib3VuZCBmb3IgdGhlIGZvbGxvd2luZyBwcm9iYWJpbGl0aWVzLg0KOC4yLiBDT05USU5VT1VTIFJBTkRPTSBWQVJJQUJMRVMgMzIxDQooYSkgUCh8WCDiiJIgMTB8IOKJpSAyKS4NCihiKSBQKHxYIOKIkiAxMHwg4omlIDUpLg0KKGMpIFAofFgg4oiSIDEwfCDiiaUgOSkuDQooZCkgUCh8WCDiiJIgMTB8IOKJpSAyMCkuDQoNCg0KKGEpIFwoIFAofFgtMTB8IFxnZXEgMikgXGxlcSBcZnJhY3sxfXt7XGxlZnQoXGZyYWN7MlxzcXJ0ezN9fXsxMH1ccmlnaHQpfV4yfSA9IFxmcmFjezF9e1xsZWZ0KFxmcmFjezJcc3FydHszfX17MTB9XHJpZ2h0KV4yfSA9IFxmcmFjezF9e3tcbGVmdChcZnJhY3syXHNxcnR7M319ezEwfVxyaWdodCl9IFx0aW1lcyB7XGxlZnQoXGZyYWN7MlxzcXJ0ezN9fXsxMH1ccmlnaHQpfX0gPSBcZnJhY3sxfXtcZnJhY3s0IFx0aW1lcyAzfXsxMDB9fSA9IFxmcmFjezEwMH17MTJ9ID0gXGZyYWN7MjV9ezN9IFwpDQoNCihiKSBcKCBQKHxYLTEwfCBcZ2VxIDUpIFxsZXEgXGZyYWN7MX17e1xsZWZ0KFxmcmFjezVcc3FydHszfX17MTB9XHJpZ2h0KX1eMn0gPSBcZnJhY3sxfXtcbGVmdChcZnJhY3s1XHNxcnR7M319ezEwfVxyaWdodCleMn0gPSBcZnJhY3sxfXt7XGxlZnQoXGZyYWN7NVxzcXJ0ezN9fXsxMH1ccmlnaHQpfSBcdGltZXMge1xsZWZ0KFxmcmFjezVcc3FydHszfX17MTB9XHJpZ2h0KX19ID0gXGZyYWN7MX17XGZyYWN7MjUgXHRpbWVzIDN9ezEwMH19ID0gXGZyYWN7MTAwfXs3NX0gPSBcZnJhY3s0fXszfSBcKQ0KDQooYykgXCggUCh8WC0xMHwgXGdlcSA5KSBcbGVxIFxmcmFjezF9e3tcbGVmdChcZnJhY3s5XHNxcnR7M319ezEwfVxyaWdodCl9XjJ9ID0gXGZyYWN7MX17XGxlZnQoXGZyYWN7OVxzcXJ0ezN9fXsxMH1ccmlnaHQpXjJ9ID0gXGZyYWN7MX17e1xsZWZ0KFxmcmFjezlcc3FydHszfX17MTB9XHJpZ2h0KX0gXHRpbWVzIHtcbGVmdChcZnJhY3s5XHNxcnR7M319ezEwfVxyaWdodCl9fSA9IFxmcmFjezF9e1xmcmFjezgxIFx0aW1lcyAzfXsxMDB9fSA9IFxmcmFjezEwMH17MjQzfSBcKQ0KDQooZCkgXCggUCh8WC0xMHwgXGdlcSAyMCkgXGxlcSBcZnJhY3sxfXsoMlxzcXJ0ezN9KV4yfSA9IFxmcmFjezF9ezQgXHRpbWVzIDN9ID0gXGZyYWN7MX17MTJ9IFwpDQoNCg0KDQo=