library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
library(grid)
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.2.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:gridExtra':
##
## combine
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(GGally)
## Warning: package 'GGally' was built under R version 4.2.3
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.2.3
file = file.choose()
salary = read.csv(file)
p = ggplot(data = salary, aes(x = Salary))
p1 = p + geom_histogram(color = "white", fill = "blue")
p2 = p + geom_histogram(aes(y = ..density..), color = "white", fill = "blue")
p2 = p2 + geom_density(col="red")
grid.arrange(p1, p2, nrow = 2, top = textGrob("Distribution of professors' salaries by sex", gp = gpar(fontsize = 20, font = 1)))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
### 2b. Create a graph to describe the differences in salaries between
male and female professors. Were the professors’ salaries different
between male and female professors?
p = ggplot(data = salary, aes(x = Salary, fill = Sex))
p1 = p + geom_histogram(position = "dodge")
p2 = ggplot(data = salary, aes(x = Salary, fill = Sex, color = Sex)) + geom_density(alpha = 0.1)
grid.arrange(p1, p2, nrow = 2, top = textGrob("Distribution of professors' salaries by sex", gp = gpar(fontsize = 20, font = 1)))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Task 3 Distribution of categorical data
p = ggplot(data = salary, aes(x = Rank, fill = Rank, col = Rank))
p1 = p + geom_bar(position = "dodge")
salary$Prof.Rank = factor(salary$Rank, levels = c("AsstProf", "AssocProf", "Prof"))
p = ggplot(data = salary, aes(x = Prof.Rank, fill = Prof.Rank, col = Prof.Rank))
p2 = p + geom_bar(position = "dodge")
grid.arrange(p1, p2, nrow = 2, top = textGrob("Distribution of professors' rank", gp = gpar(fontsize = 20, font = 1)))
### 3b. Create a graph to describe whether professors’ ranks differed
between male and female professors. Write a sentence to interpret the
graph.
p = ggplot(data = salary, aes(x = Prof.Rank, fill = Sex, col = Sex))
p1 = p + geom_bar(position = "dodge")
p1 + ggtitle("Distribution of professors' rank by sex")
p = ggplot(salary %>% count(Prof.Rank, Sex) %>% mutate(pct = n/sum(n)), aes(factor(Prof.Rank), n, fill = Sex))
p = p + geom_bar(stat ="identity")
p = p + geom_text(aes(label = paste0(sprintf("%1.1f", pct*100),"%")), position = position_stack(vjust=0.5))
p + labs(x = "Professors' ranks", y = "Number of cases") + ggtitle("Professors' rank by sex")
## Task 4. Comparison of numeric data
p = ggplot(data = salary, aes(x = Sex, y = Salary, fill = Sex, col = Sex))
p1 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05)
p1 + labs(x = "Sex", y = "Salaries (USD)") + ggtitle("Professors' salaries by sex") + theme_bw()
### 4b. Create a graph to describe the differences in salaries by
professors’ rank and sex. What do you think about the graph?
p = ggplot(data = salary, aes(x = Prof.Rank, y = Salary, fill = Prof.Rank, col = Prof.Rank))
p1 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05)
p1 + labs(x = "Rank", y = "Salaries (USD)") + ggtitle("Professors' salaries by rank") + theme_bw()
p = ggplot(data = salary, aes(x = Prof.Rank, y = Salary, fill = Sex, col = Sex))
p1 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05)
p1 + labs(x = "Professors' Ranks", y = "Salaries (USD)") + ggtitle("Professors' salaries by rank and sex") + theme_bw()