library(fpp3)
library(ggfortify)
library(forecast)
Instructions
Do the exercises 9.1, 9.2, 9.3, 9.5, 9.6, 9.7, 9.8 in Hyndman. Please
submit both the Rpubs link as well as your .rmd file.
9.1
Figure 9.32 shows the ACFs for 36 random numbers, 360 random numbers
and 1,000 random numbers.
a.
Explain the differences among these figures. Do they all indicate
that the data are white noise?
9.32
They differ in in range and all fall below the dashed lines. As the
values lessens from about 0.25 and progressively lessen towards 0, the
weaker the presence of autocorrelation. As the autocorrelation
decreases, the more the values resemble white noise.
b.
Why are the critical values at different distances from the mean of
zero? Why are the autocorrelations different in each figure when they
each refer to white noise?
They are at different distances because they are at different times
or lengths of time \(T\) which is
approximated by the formula \(\pm2\sqrt{T}\) (ref)
Meaning the critical values decrease as the length of time
increases.
9.2.
A classic example of a non-stationary series are stock prices. Plot
the daily closing prices for Amazon stock (contained in
gafa_stock), along with the ACF and PACF. Explain how each
plot shows that the series is non-stationary and should be
differenced.
unique(gafa_stock$Symbol)
[1] "AAPL" "AMZN" "FB" "GOOG"
df_amzn<-gafa_stock%>%
filter(Symbol=="AMZN")
ggplot(df_amzn, aes(x = Date, y = Close)) +
geom_line(color = "blue") +
labs(title = "Daily Closing Prices for Amazon Stock", x = "Date", y = "Closing Price") +
theme_minimal()

df_amzn%>%
gg_tsdisplay(Close,plot_type = 'partial',)+
labs(title="Partial Autocorrelation Funtion (PACF)")

df_amzn%>%
gg_tsdisplay(difference(Close),plot_type = 'partial')+
labs(title="Partial Autocorrelation Funtion (PACF)")

- Closing Price plot shows an upward trend, plenty of variation but no
real seasonality or cyclic behavior.
- ACF plot again shows no seasonality but it is slightly trending
negatively.
- Differencing which would remove the changes in level, which could
remove/reduce the trend and stabilize the mean.
- Differencing ACF plot supports that Amazon Closing price has no
autocorrelation.
9.3.
For the following series, find an appropriate Box-Cox transformation
and order of differencing in order to obtain stationary data.
a.
Turkish GDP from global_economy.
#filter out for turkey
df_turkey <- global_economy %>%
filter(Country=='Turkey')
#find lambda value
lambda_turkey <- df_turkey %>%
features(GDP, features = guerrero) %>%
pull(lambda_guerrero)
#find ndiffs
df_turkey %>%
mutate(GDP = box_cox(GDP, lambda_turkey)) %>%
features(GDP, unitroot_ndiffs)
lambda_turkey
[1] 0.1572187
The best Box-Cox transformation is using a lambda of 0.1572187 or
roughly 0.16. As far as differencing, the number of difference needed to
obtain stationary data is 1.
b.
Accommodation takings in the state of Tasmania from
aus_accommodation.
df_tasmania <- aus_accommodation %>%
filter(State == 'Tasmania')
lambda_tasmania <- df_tasmania %>%
features(Takings, features = guerrero) %>%
pull(lambda_guerrero)
df_tasmania %>%
mutate(Takings = box_cox(Takings, lambda_tasmania)) %>%
features(Takings, unitroot_ndiffs)
lambda_tasmania
[1] 0.001819643
The best lambda for the Box-cox transformation of
aus_accommodation Takings for
Tasmania is 0.001819643 or roughly 0.002, with the number
of difference needed for stationary data being 1.
c.
Monthly sales from souvenirs.
lambda_souvenirs <- souvenirs %>%
features(Sales, features = guerrero) %>%
pull(lambda_guerrero)
souvenirs %>%
mutate(Sales = box_cox(Sales, lambda_souvenirs)) %>%
features(Sales, unitroot_ndiffs)
lambda_souvenirs
[1] 0.002118221
The best lambda for the Box-cox transformation of Monthly sales from
souvenirs is 0.002118221 or roughly 0.002, with the number
of difference needed for stationary data being 1.
9.5
For your retail data (from Exercise 7 in Section 2.10),
find the appropriate order of differencing (after transformation if
necessary) to obtain stationary data.
set.seed(1234)
myseries <- aus_retail |>
filter(`Series ID` == sample(aus_retail$`Series ID`,1))
myseries %>%
gg_tsdisplay(Turnover, plot_type = 'partial', lag_max = 36) +
labs(title= "Monthly Australian retail data | Turnover", y = NULL)

myseries %>%
transmute(
`Turnover` = Turnover,
`log(Turnover)` = log(Turnover),
`log(Turnover) | Ann. Change` = difference(log(Turnover), 12),
`DD log(Turnover)` =
difference(difference(log(Turnover), 12), 1)
)%>%
pivot_longer(-Month, names_to="Type", values_to="Turnover") %>%
mutate(
Type = factor(Type, levels = c(
"Turnover",
"log(Turnover)",
"log(Turnover) | Ann. Change",
"DD log(Turnover)"))
) %>%
ggplot(aes(x = Month, y = Turnover)) +
geom_line() +
facet_grid(vars(Type), scales = "free_y") +
labs(title= "Monthly Australian retail data | Turnover", y = NULL)

There clearly seems to be a increasing trend. It appears that there
is a seasonal pattern for the series that increases in size, most
notable for the spike in each level. Regardless it lack predictability
for the stationary series. Log transformation stabilizes the data but
maintians the increasing trend, while the seasonally differenced data of
the log transformation was the most reasonably stabilized.
9.6
Simulate and plot some data from simple ARIMA models.
Use the following R code to generate data from an AR(1) model with
\(\emptyset_1=0.6\)
and \(\sigma^2=1\). The process
starts with \(y_1=0\).
y <- numeric(100)
e <- rnorm(100)
for(i in 2:100)
y[i] <- 0.6*y[i-1] + e[i]
sim <- tsibble(idx = seq_len(100), y = y, index = idx)
head(sim)
b.
Produce a time plot for the series. How does the plot change as you
change \(\phi_1\)?
sim %>% autoplot(y) +
labs(title = expression("AR(1) model with" ~ phi[1] ~ "=" ~ 0.6 ~ "," ~ sigma^2 ~ "=" ~ 1 ~ "," ~ y[1] ~ "=" ~ 0))

for(i in 2:100)
y[i] <- .8*y[i-1] + e[i]
sim1 <- tsibble(idx = seq_len(100), y = y, index = idx)
for(i in 2:100)
y[i] <- 0.2*y[i-1] + e[i]
sim2 <- tsibble(idx = seq_len(100), y = y, index = idx)
for(i in 2:100)
y[i] <- -1.0*y[i-1] + e[i]
sim3 <- tsibble(idx = seq_len(100), y = y, index = idx)
for(i in 2:100)
y[i] <- 1.4*y[i-1] + e[i]
sim4 <- tsibble(idx = seq_len(100), y = y, index = idx)
plt1 <- sim1 %>% autoplot(y) +
labs(title = expression("AR(1) model with" ~ phi[1] ~ "=" ~ 0.8 ~ "," ~ sigma^2 ~ "=" ~ 1 ))
plt2 <- sim2 %>% autoplot(y) +
labs(title = expression("AR(1) model with" ~ phi[1] ~ "=" ~ 0.2 ~ "," ~ sigma^2 ~ "=" ~ 1 ))
plt3 <- sim3 %>% autoplot(y) +
labs(title = expression("AR(1) model with" ~ phi[1] ~ "=" ~ -1.0 ~ "," ~ sigma^2 ~ "=" ~ 1 ))
plt4 <- sim4 %>% autoplot(y) +
labs(title = expression("AR(1) model with" ~ phi[1] ~ "=" ~ 1.4 ~ "," ~ sigma^2 ~ "=" ~ 1 ))
gridExtra::grid.arrange(plt1, plt2, plt3, plt4, ncol = 2, nrow = 2)

As \(\phi_{1}\) increases or
decrease, the magnitude and wavelength matches \(\phi_{1}\) increasing and decreasing in the
same direction. This is also true for the magnitude and wavelength for
values between 0 and 1, but for \(\phi\) values greater than 1 the plot
emulates an exponential function \(f(x)=a^x\), while wavelength shortens for
values less than 0, meaning a higher frequency with varying
amplitudes.
c.
Write your own code to generate data from an MA(1) model with \(\theta_1\)=0.6 and \(\sigma^2=1\).
# Reference
# y <- numeric(100)
# e <- rnorm(100)
# for(i in 2:100)
# y[i] <- 0.6*y[i-1] + e[i]
# sim <- tsibble(idx = seq_len(100), y = y, index = idx)
for(i in 2:100)
y[i] <- 0.6*e[i-1] + e[i]
sim_ma <- tsibble(idx = seq_len(100), y = y, index = idx)
d.
Produce a time plot for the series. How does the plot change as you
change \(\theta_1\)?
sim_ma %>% autoplot(y)+
labs(title = expression("AR(1) model with" ~ phi[1] ~ "=" ~ 0.6 ~ "," ~ sigma^2 ~ "=" ~ 1))

#create the data
for(i in 2:100)
y[i] <- 0*e[i-1] + e[i]
sim1_ma <- tsibble(idx = seq_len(100), y = y, index = idx)
for(i in 2:100)
y[i] <- .8*e[i-1] + e[i]
sim2_ma <- tsibble(idx = seq_len(100), y = y, index = idx)
for(i in 2:100)
y[i] <- -1.4*e[i-1] + e[i]
sim3_ma<- tsibble(idx = seq_len(100), y = y, index = idx)
for(i in 2:100)
y[i] <- 1.5*e[i-1] + e[i]
sim4_ma<- tsibble(idx = seq_len(100), y = y, index = idx)
#create the ggplot objects
plt5 <- sim1_ma %>% autoplot(y)+
labs(title = expression("MA(1) model with" ~ phi[1] ~ "=" ~ 0 ~ "," ~ sigma^2 ~ "=" ~ 1))
plt6 <- sim2_ma %>% autoplot(y)+
labs(title = expression("MA(1) model with" ~ phi[1] ~ "=" ~ 0.8 ~ "," ~ sigma^2 ~ "=" ~ 1))
plt7 <- sim3_ma %>% autoplot(y)+
labs(title = expression("MA(1) model with" ~ phi[1] ~ "=" ~ -1.4 ~ "," ~ sigma^2 ~ "=" ~ 1))
plt8 <- sim4_ma %>% autoplot(y)+
labs(title = expression("MA(1) model with" ~ phi[1] ~ "=" ~ 1.5 ~ "," ~ sigma^2 ~ "=" ~ 1))
#plot them all togther
gridExtra::grid.arrange(plt5, plt6, plt7, plt8, ncol = 2, nrow = 2)

As \(\theta\) changes, the plots
barely change to be honest.They all show a steady variance and implying
the MA(1) series are stationary. Amplitude minimum and maximum hardly
changes as well and there are no shifts in wavelengths.
e.
Generate data from an ARMA(1,1) model with \(\phi_1=0.6\), \(\theta_1=0.6\) and \(\sigma^2=1\)
for(i in 2:100)
y[i] <- 0.6*y[i-1] + 0.6*e[i-1] + e[i]
sim_arma11 <- tsibble(idx = seq_len(100), y = y, index = idx)
f.
Generate data from an AR(2) model with \(\phi_1=−0.8\), \(\phi_2=0.3\) and \(\sigma^2=1\). (Note that these parameters
will give a non-stationary series.)
phi_1<--0.8
phi_2<-0.3
for(i in 3:100)
y[i] <- -phi_1*y[i-1] + phi_2*y[i-2] + e[i]
sim_ar_8_3 <- tsibble(idx = seq_len(100), y = y, index = idx)
g.
Graph the latter two series and compare them.
plt9 <- sim_arma11 %>% autoplot(y)+
labs(title = expression("ARMA(1,1) model with" ~ phi[1] ~ "=" ~ 0.6 ~ "," ~ theta[1] ~ "=" ~ 0.6 ~ "," ~ sigma^2 ~ "=" ~ 1))
plt10 <- sim_ar_8_3 %>% autoplot(y)+
labs(title = expression("ARMA model with" ~ phi[1] ~ "=" ~ -0.8 ~ "," ~ theta[1] ~ "=" ~ 0.3 ~ "," ~ sigma^2 ~ "=" ~ 1))
gridExtra::grid.arrange(plt9, plt10, ncol = 1, nrow = 2)

Arma(1,1) model has a plot that does not show seasonality or trend,
with a maximum of 3 and minimum of -6, while the 2nd ARMA model emulates
a exponential fucntion as noted in a previous example.
9.7
Consider aus_airpassengers, the total number of passengers (in
millions) from Australian air carriers for the period 1970-2011.
max(aus_airpassengers$Year)
[1] 2016
min(aus_airpassengers$Year)
[1] 1970
head(aus_airpassengers)
a.
Use ARIMA() to find an appropriate ARIMA model. What model was
selected. Check that the residuals look like white noise. Plot forecasts
for the next 10 periods.
aus_air_pd_71_11<-aus_airpassengers %>%
filter(Year>=1971&Year<=2011)
fit_aus <- aus_air_pd_71_11%>%
model(ARIMA(Passengers))
#find the fit
report(fit_aus)
Series: Passengers
Model: ARIMA(0,2,1)
Coefficients:
ma1
-0.8765
s.e. 0.0742
sigma^2 estimated as 4.778: log likelihood=-86.06
AIC=176.13 AICc=176.46 BIC=179.45
#forecast 10 periods
fit_aus %>% forecast(h=10) %>%
autoplot(aus_airpassengers) +
labs(y = "Passengers (Millions)",
title = "Australian Air Passengers (1971-2011)",
subtitle = "10 Year Forecast")

fit_aus %>% gg_tsresiduals() +
labs(title = "Australian Air Passengers (1971-2011)",
subtitle = "Australian Air Passengers (1971-2011)")

Function ARIMA() automatically selected for
aus_airpassengers data model, which was an ARIMA(0,2,1).
Function gg_tsresiduals() confirms there is white noise
base on the residuals.
b.
Write the model in terms of the backshift operator.
\(y_t = -0.8963 * \epsilon_{t-1} +
\epsilon_{t}\)
c.
Plot forecasts from an ARIMA(0,1,0) model with drift and compare
these to part a.
fit_aus_010 <- aus_air_pd_71_11 %>%
model(ARIMA(Passengers ~ pdq(0,1,0)))
report(fit_aus_010)
Series: Passengers
Model: ARIMA(0,1,0) w/ drift
Coefficients:
constant
1.4008
s.e. 0.3384
sigma^2 estimated as 4.699: log likelihood=-87.2
AIC=178.4 AICc=178.72 BIC=181.77
#plot forecast
fit_aus_010 %>% forecast(h=10) %>%
autoplot(aus_air_pd_71_11) +
labs(y = "Passengers (Millions",
title = "Australian Air Passengers (1971-2011)",
subtitle = "10 Year Forecast")

#plot residuals
fit_aus_010 %>% gg_tsresiduals() +
labs(title = "Australian Air Passengers (1971-2011)",
subtitle = "10 Year Forecast")

Part A forecasts higher, and part C residuals show white noise.
d.
Plot forecasts from an ARIMA(2,1,2) model with drift and compare
these to parts a and c. Remove the constant and see what happens.
fit_aus212 <- aus_air_pd_71_11 %>%
model(ARIMA(Passengers ~ pdq(2,1,2)))
fit_aus212_no_const <- aus_airpassengers %>%
model(ARIMA(Passengers ~1+ pdq(2,1,2),include.constant=FALSE))
Warning: 1 error encountered for ARIMA(Passengers ~ 1 + pdq(2, 1, 2), include.constant = FALSE)
[1] unused argument (include.constant = FALSE)
report(fit_aus212)
Series: Passengers
Model: ARIMA(2,1,2)
Coefficients:
ar1 ar2 ma1 ma2
1.5370 -0.5426 -1.6145 0.6863
s.e. 0.9194 0.9077 0.8176 0.6743
sigma^2 estimated as 4.816: log likelihood=-87.05
AIC=184.1 AICc=185.87 BIC=192.55
#plot forecast
fit_aus212 %>% forecast(h=10) %>%
autoplot(aus_air_pd_71_11) +
labs(y = "Passengers (Millions",
title = "Australian Air Passengers (1971-2011)",
subtitle = "10 Year Forecast")

#plot residuals
fit_aus212 %>% gg_tsresiduals() +
labs(title = "Australian Air Passengers (1971-2011)",
subtitle = "10 Year Forecast")

This model compared to part a and b seems worse and has white noise.
Removing the constant produced an error.
e.
Plot forecasts from an ARIMA(0,2,1) model with a constant. What
happens?
section 9.7 a does this already. It is the best fitting model.
9.8
For the United States GDP series (from global_economy):
df_us<-global_economy%>%
filter(Country =="United States")
a.
if necessary, find a suitable Box-Cox transformation for the
data;
df_us %>% autoplot(GDP) +
labs(title = "US GDP")

No need for a transformation, the data doesn’t vary.
b.
fit a suitable ARIMA model to the transformed data using ARIMA();
fit_us <- df_us %>%
model(
arima = ARIMA(GDP, stepwise = FALSE, approx = FALSE))
report(fit_us)
Series: GDP
Model: ARIMA(0,2,2)
Coefficients:
ma1 ma2
-0.4206 -0.3048
s.e. 0.1197 0.1078
sigma^2 estimated as 2.615e+22: log likelihood=-1524.08
AIC=3054.15 AICc=3054.61 BIC=3060.23
Model: ARIMA(0,2,2) according to ARIMA()
c.
try some other plausible models by experimenting with the orders
chosen;
df_us %>%
features(GDP, unitroot_ndiffs)
df_us %>%
gg_tsdisplay(GDP, plot_type = 'partial')

fit_us222 <- df_us %>%
model(ARIMA(GDP ~ pdq(2,2,2)))
fit_us122 <- df_us %>%
model(ARIMA(GDP ~ pdq(1,2,2)))
fit_us220 <- df_us %>%
model(ARIMA(GDP ~ pdq(2,2,0)))
fit_us221 <- df_us %>%
model(ARIMA(GDP ~ pdq(2,2,1)))
report(fit_us222)
Series: GDP
Model: ARIMA(2,2,2)
Coefficients:
ar1 ar2 ma1 ma2
1.3764 -0.4780 -1.9659 1.0000
s.e. 0.1216 0.1354 0.0723 0.0719
sigma^2 estimated as 2.283e+22: log likelihood=-1521.14
AIC=3052.27 AICc=3053.47 BIC=3062.4
report(fit_us122)
Series: GDP
Model: ARIMA(1,2,2)
Coefficients:
ar1 ma1 ma2
0.2053 -0.5912 -0.1928
s.e. 0.3008 0.2886 0.2102
sigma^2 estimated as 2.646e+22: log likelihood=-1523.86
AIC=3055.72 AICc=3056.51 BIC=3063.82
report(fit_us220)
Series: GDP
Model: ARIMA(2,2,0)
Coefficients:
ar1 ar2
-0.2088 -0.2059
s.e. 0.1320 0.1317
sigma^2 estimated as 2.984e+22: log likelihood=-1527.51
AIC=3061.02 AICc=3061.48 BIC=3067.09
report(fit_us221)
Series: GDP
Model: ARIMA(2,2,1)
Coefficients:
ar1 ar2 ma1
0.4321 -0.1605 -0.8028
s.e. 0.1537 0.1405 0.0908
sigma^2 estimated as 2.619e+22: log likelihood=-1523.61
AIC=3055.22 AICc=3056 BIC=3063.32
- AIC, AICc, and BIC values increase when increasing q value from 2 to
1.
- AIC, AICc, and BIC values decreased when decreasing q values.
- 2,2,2 is the best fit from the combinations.
d.
choose what you think is the best model and check the residual
diagnostics;
ARIMA(2,2,2) - But the ACF looks like white noise and residuals is
left skewed
fit_us222 %>% gg_tsresiduals() +
labs(title = "ARIMA(2,2,2)")

e.
produce forecasts of your fitted model. Do the forecasts look
reasonable?
fit_us222 %>% forecast(h=10) %>%
autoplot(df_us) +
labs(title = "ARIMA(2,2,2)")

Pretty much reasonable base on what our previous data showed.
f.
compare the results with what you would obtain using ETS() (with no
transformation).
fit_ets <- df_us %>%
model(ETS(GDP))
report(fit_ets)
Series: GDP
Model: ETS(M,A,N)
Smoothing parameters:
alpha = 0.9990876
beta = 0.5011949
Initial states:
l[0] b[0]
448093333334 64917355687
sigma^2: 7e-04
AIC AICc BIC
3190.787 3191.941 3201.089
fit_ets %>% forecast(h = 10) %>%
autoplot(df_us)

fit_ets %>% gg_tsresiduals()

The comparison for ARIMA(2,2,2) AICc=3053.47 vs. ETS(M,A,N)
AICc=3191.941, ARIMA(2,2,2) performs better and forecasts are good for
both considering the ACF plots lack correlation.
LS0tCnRpdGxlOiAnREFUQSA2MjQ6IFBSRURJQ1RJVkUgQU5BTFlUSUNTIEhXNicKYXV0aG9yOiAiR2FicmllbCBDYW1wb3MiCmRhdGU6ICJMYXN0IGVkaXRlZCBgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVCICVkLCAlWScpYCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBnZW9tZXRyeTogbGVmdD0wLjVjbSxyaWdodD0wLjVjbSx0b3A9MWNtLGJvdHRvbT0yY20KICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgcGRmX2RvY3VtZW50OgogICAgbGF0ZXhfZW5naW5lOiB4ZWxhdGV4CnVybGNvbG9yOiBibHVlCi0tLQoKYGBge3IsIG1lc3NhZ2U9RkFMU0V9CmxpYnJhcnkoZnBwMykKbGlicmFyeShnZ2ZvcnRpZnkpCmxpYnJhcnkoZm9yZWNhc3QpCmBgYAoKIyBJbnN0cnVjdGlvbnMKCkRvIHRoZSBleGVyY2lzZXMgOS4xLCA5LjIsIDkuMywgOS41LCA5LjYsIDkuNywgOS44IGluIEh5bmRtYW4uICBQbGVhc2Ugc3VibWl0IGJvdGggdGhlIFJwdWJzIGxpbmsgYXMgd2VsbCBhcyB5b3VyIC5ybWQgZmlsZS4KCgojIDkuMQoKRmlndXJlIDkuMzIgc2hvd3MgdGhlIEFDRnMgZm9yIDM2IHJhbmRvbSBudW1iZXJzLCAzNjAgcmFuZG9tIG51bWJlcnMgYW5kIDEsMDAwIHJhbmRvbSBudW1iZXJzLgoKIyMgYS4KCkV4cGxhaW4gdGhlIGRpZmZlcmVuY2VzIGFtb25nIHRoZXNlIGZpZ3VyZXMuIERvIHRoZXkgYWxsIGluZGljYXRlIHRoYXQgdGhlIGRhdGEgYXJlIHdoaXRlIG5vaXNlPwoKIVs5LjMyXShGaWd1cmVfOV8zMi5wbmcpCgpUaGV5IGRpZmZlciBpbiBpbiByYW5nZSBhbmQgYWxsIGZhbGwgYmVsb3cgdGhlIGRhc2hlZCBsaW5lcy4gQXMgdGhlIHZhbHVlcyBsZXNzZW5zIGZyb20gYWJvdXQgMC4yNSBhbmQgcHJvZ3Jlc3NpdmVseSBsZXNzZW4gdG93YXJkcyAwLCB0aGUgd2Vha2VyIHRoZSBwcmVzZW5jZSBvZiBhdXRvY29ycmVsYXRpb24uIEFzIHRoZSBhdXRvY29ycmVsYXRpb24gZGVjcmVhc2VzLCB0aGUgbW9yZSB0aGUgdmFsdWVzIHJlc2VtYmxlIHdoaXRlIG5vaXNlLgoKIyMgYi4KCldoeSBhcmUgdGhlIGNyaXRpY2FsIHZhbHVlcyBhdCBkaWZmZXJlbnQgZGlzdGFuY2VzIGZyb20gdGhlIG1lYW4gb2YgemVybz8gV2h5IGFyZSB0aGUgYXV0b2NvcnJlbGF0aW9ucyBkaWZmZXJlbnQgaW4gZWFjaCBmaWd1cmUgd2hlbiB0aGV5IGVhY2ggcmVmZXIgdG8gd2hpdGUgbm9pc2U/CgpUaGV5IGFyZSBhdCBkaWZmZXJlbnQgZGlzdGFuY2VzIGJlY2F1c2UgdGhleSBhcmUgYXQgZGlmZmVyZW50IHRpbWVzIG9yIGxlbmd0aHMgb2YgdGltZSAkVCQgd2hpY2ggaXMgYXBwcm94aW1hdGVkIGJ5IHRoZSBmb3JtdWxhICRccG0yXHNxcnR7VH0kIChbcmVmXShodHRwOi8vc2ZiNjQ5Lndpd2kuaHUtYmVybGluLmRlL2ZlZGNfaG9tZXBhZ2UveHBsb3JlL3R1dG9yaWFscy94ZWdib2h0bWxub2RlMzkuaHRtbCkpIE1lYW5pbmcgdGhlIGNyaXRpY2FsIHZhbHVlcyBkZWNyZWFzZSBhcyB0aGUgbGVuZ3RoIG9mIHRpbWUgaW5jcmVhc2VzLgoKIyA5LjIuCgpBIGNsYXNzaWMgZXhhbXBsZSBvZiBhIG5vbi1zdGF0aW9uYXJ5IHNlcmllcyBhcmUgc3RvY2sgcHJpY2VzLiBQbG90IHRoZSBkYWlseSBjbG9zaW5nIHByaWNlcyBmb3IgQW1hem9uIHN0b2NrIChjb250YWluZWQgaW4gYGdhZmFfc3RvY2tgKSwgYWxvbmcgd2l0aCB0aGUgQUNGIGFuZCBQQUNGLiBFeHBsYWluIGhvdyBlYWNoIHBsb3Qgc2hvd3MgdGhhdCB0aGUgc2VyaWVzIGlzIG5vbi1zdGF0aW9uYXJ5IGFuZCBzaG91bGQgYmUgZGlmZmVyZW5jZWQuCgpgYGB7cn0KdW5pcXVlKGdhZmFfc3RvY2skU3ltYm9sKQpgYGAKCgpgYGB7ciwgd2FybmluZz1GQUxTRX0KZGZfYW16bjwtZ2FmYV9zdG9jayU+JQogICAgICAgICBmaWx0ZXIoU3ltYm9sPT0iQU1aTiIpCmdncGxvdChkZl9hbXpuLCBhZXMoeCA9IERhdGUsIHkgPSBDbG9zZSkpICsKICBnZW9tX2xpbmUoY29sb3IgPSAiYmx1ZSIpICsKICBsYWJzKHRpdGxlID0gIkRhaWx5IENsb3NpbmcgUHJpY2VzIGZvciBBbWF6b24gU3RvY2siLCB4ID0gIkRhdGUiLCB5ID0gIkNsb3NpbmcgUHJpY2UiKSArCiAgdGhlbWVfbWluaW1hbCgpCgpkZl9hbXpuJT4lCmdnX3RzZGlzcGxheShDbG9zZSxwbG90X3R5cGUgPSAncGFydGlhbCcsKSsKICBsYWJzKHRpdGxlPSJQYXJ0aWFsIEF1dG9jb3JyZWxhdGlvbiBGdW50aW9uIChQQUNGKSIpCgpkZl9hbXpuJT4lCmdnX3RzZGlzcGxheShkaWZmZXJlbmNlKENsb3NlKSxwbG90X3R5cGUgPSAncGFydGlhbCcpKwogIGxhYnModGl0bGU9IlBhcnRpYWwgQXV0b2NvcnJlbGF0aW9uIEZ1bnRpb24gKFBBQ0YpIikKCmBgYAoKKiBDbG9zaW5nIFByaWNlIHBsb3Qgc2hvd3MgYW4gdXB3YXJkIHRyZW5kLCBwbGVudHkgb2YgdmFyaWF0aW9uIGJ1dCBubyByZWFsIHNlYXNvbmFsaXR5IG9yIGN5Y2xpYyBiZWhhdmlvci4KKiBBQ0YgcGxvdCBhZ2FpbiBzaG93cyBubyBzZWFzb25hbGl0eSBidXQgaXQgaXMgc2xpZ2h0bHkgdHJlbmRpbmcgbmVnYXRpdmVseS4KKiBEaWZmZXJlbmNpbmcgd2hpY2ggd291bGQgcmVtb3ZlIHRoZSBjaGFuZ2VzIGluIGxldmVsLCB3aGljaCBjb3VsZCByZW1vdmUvcmVkdWNlIHRoZSB0cmVuZCBhbmQgc3RhYmlsaXplIHRoZSBtZWFuLgoqIERpZmZlcmVuY2luZyBBQ0YgcGxvdCBzdXBwb3J0cyB0aGF0IEFtYXpvbiBDbG9zaW5nIHByaWNlIGhhcyBubyBhdXRvY29ycmVsYXRpb24uCgoKIyA5LjMuCgpGb3IgdGhlIGZvbGxvd2luZyBzZXJpZXMsIGZpbmQgYW4gYXBwcm9wcmlhdGUgQm94LUNveCB0cmFuc2Zvcm1hdGlvbiBhbmQgb3JkZXIgb2YgZGlmZmVyZW5jaW5nIGluIG9yZGVyIHRvIG9idGFpbiBzdGF0aW9uYXJ5IGRhdGEuCgojIyBhLgoKVHVya2lzaCBHRFAgZnJvbSBgZ2xvYmFsX2Vjb25vbXlgLgoKCmBgYHtyfQojZmlsdGVyIG91dCBmb3IgdHVya2V5CmRmX3R1cmtleSA8LSBnbG9iYWxfZWNvbm9teSAlPiUgCiAgZmlsdGVyKENvdW50cnk9PSdUdXJrZXknKSAKCiNmaW5kIGxhbWJkYSB2YWx1ZQpsYW1iZGFfdHVya2V5IDwtIGRmX3R1cmtleSAlPiUKICBmZWF0dXJlcyhHRFAsIGZlYXR1cmVzID0gZ3VlcnJlcm8pICU+JQogIHB1bGwobGFtYmRhX2d1ZXJyZXJvKQoKI2ZpbmQgbmRpZmZzIApkZl90dXJrZXkgICU+JQogIG11dGF0ZShHRFAgPSBib3hfY294KEdEUCwgbGFtYmRhX3R1cmtleSkpICU+JQogIGZlYXR1cmVzKEdEUCwgdW5pdHJvb3RfbmRpZmZzKQoKbGFtYmRhX3R1cmtleQpgYGAKClRoZSBiZXN0IEJveC1Db3ggdHJhbnNmb3JtYXRpb24gaXMgdXNpbmcgYSBsYW1iZGEgb2YgMC4xNTcyMTg3ICBvciByb3VnaGx5IDAuMTYuIEFzIGZhciBhcyBkaWZmZXJlbmNpbmcsIHRoZSBudW1iZXIgb2YgZGlmZmVyZW5jZSBuZWVkZWQgdG8gb2J0YWluIHN0YXRpb25hcnkgZGF0YSBpcyAxLiAKCgojIyBiLgoKQWNjb21tb2RhdGlvbiB0YWtpbmdzIGluIHRoZSBzdGF0ZSBvZiBUYXNtYW5pYSBmcm9tIGF1c19hY2NvbW1vZGF0aW9uLgoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KZGZfdGFzbWFuaWEgPC0gYXVzX2FjY29tbW9kYXRpb24gJT4lIAogIGZpbHRlcihTdGF0ZSA9PSAnVGFzbWFuaWEnKQoKbGFtYmRhX3Rhc21hbmlhIDwtIGRmX3Rhc21hbmlhICU+JQogIGZlYXR1cmVzKFRha2luZ3MsIGZlYXR1cmVzID0gZ3VlcnJlcm8pICU+JQogIHB1bGwobGFtYmRhX2d1ZXJyZXJvKQoKZGZfdGFzbWFuaWEgJT4lCiAgbXV0YXRlKFRha2luZ3MgPSBib3hfY294KFRha2luZ3MsIGxhbWJkYV90YXNtYW5pYSkpICU+JQogIGZlYXR1cmVzKFRha2luZ3MsIHVuaXRyb290X25kaWZmcykgCgpsYW1iZGFfdGFzbWFuaWEKYGBgClRoZSBiZXN0IGxhbWJkYSBmb3IgdGhlIEJveC1jb3ggdHJhbnNmb3JtYXRpb24gb2YgYGF1c19hY2NvbW1vZGF0aW9uYCBgVGFraW5nc2AgZm9yIGBUYXNtYW5pYWAgaXMgMC4wMDE4MTk2NDMgb3Igcm91Z2hseSAwLjAwMiwgd2l0aCB0aGUgbnVtYmVyIG9mIGRpZmZlcmVuY2UgbmVlZGVkIGZvciBzdGF0aW9uYXJ5IGRhdGEgYmVpbmcgMS4KCiMjIGMuCgpNb250aGx5IHNhbGVzIGZyb20gc291dmVuaXJzLgoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KCmxhbWJkYV9zb3V2ZW5pcnMgPC0gc291dmVuaXJzICU+JSAKICBmZWF0dXJlcyhTYWxlcywgZmVhdHVyZXMgPSBndWVycmVybykgJT4lCiAgcHVsbChsYW1iZGFfZ3VlcnJlcm8pCgpzb3V2ZW5pcnMgJT4lCiAgbXV0YXRlKFNhbGVzID0gYm94X2NveChTYWxlcywgbGFtYmRhX3NvdXZlbmlycykpICU+JQogIGZlYXR1cmVzKFNhbGVzLCB1bml0cm9vdF9uZGlmZnMpCgpsYW1iZGFfc291dmVuaXJzCmBgYAoKVGhlIGJlc3QgbGFtYmRhIGZvciB0aGUgQm94LWNveCB0cmFuc2Zvcm1hdGlvbiBvZiBNb250aGx5IHNhbGVzIGZyb20gYHNvdXZlbmlyc2AgaXMgMC4wMDIxMTgyMjEgb3Igcm91Z2hseSAwLjAwMiwgd2l0aCB0aGUgbnVtYmVyIG9mIGRpZmZlcmVuY2UgbmVlZGVkIGZvciBzdGF0aW9uYXJ5IGRhdGEgYmVpbmcgMS4KCiMgOS41CgpGb3IgeW91ciByZXRhaWwgZGF0YSAoZnJvbSBFeGVyY2lzZSA3IGluIFNlY3Rpb24gWzIuMTBdKGh0dHBzOi8vb3RleHRzLmNvbS9mcHAzL2dyYXBoaWNzLWV4ZXJjaXNlcy5odG1sI2dyYXBoaWNzLWV4ZXJjaXNlcykpLCBmaW5kIHRoZSBhcHByb3ByaWF0ZSBvcmRlciBvZiBkaWZmZXJlbmNpbmcgKGFmdGVyIHRyYW5zZm9ybWF0aW9uIGlmIG5lY2Vzc2FyeSkgdG8gb2J0YWluIHN0YXRpb25hcnkgZGF0YS4KCmBgYHtyfQpzZXQuc2VlZCgxMjM0KQpteXNlcmllcyA8LSBhdXNfcmV0YWlsIHw+CiAgZmlsdGVyKGBTZXJpZXMgSURgID09IHNhbXBsZShhdXNfcmV0YWlsJGBTZXJpZXMgSURgLDEpKQpgYGAKCmBgYHtyfQpteXNlcmllcyAlPiUKICAgIGdnX3RzZGlzcGxheShUdXJub3ZlciwgcGxvdF90eXBlID0gJ3BhcnRpYWwnLCBsYWdfbWF4ID0gMzYpICsKICBsYWJzKHRpdGxlPSAiTW9udGhseSBBdXN0cmFsaWFuIHJldGFpbCBkYXRhIHwgVHVybm92ZXIiLCB5ID0gTlVMTCkKYGBgCgoKYGBge3IsIGZpZy5oZWlnaHQ9OX0KbXlzZXJpZXMgJT4lIAogIHRyYW5zbXV0ZSgKICAgIGBUdXJub3ZlcmAgPSBUdXJub3ZlciwKICAgIGBsb2coVHVybm92ZXIpYCA9IGxvZyhUdXJub3ZlciksCiAgICBgbG9nKFR1cm5vdmVyKSB8IEFubi4gQ2hhbmdlYCA9IGRpZmZlcmVuY2UobG9nKFR1cm5vdmVyKSwgMTIpLAogICAgICAgIGBERCBsb2coVHVybm92ZXIpYCA9CiAgICAgICAgICAgICAgICAgICAgIGRpZmZlcmVuY2UoZGlmZmVyZW5jZShsb2coVHVybm92ZXIpLCAxMiksIDEpCiAgKSU+JQogIHBpdm90X2xvbmdlcigtTW9udGgsIG5hbWVzX3RvPSJUeXBlIiwgdmFsdWVzX3RvPSJUdXJub3ZlciIpICU+JQogIG11dGF0ZSgKICAgIFR5cGUgPSBmYWN0b3IoVHlwZSwgbGV2ZWxzID0gYygKICAgICAgIlR1cm5vdmVyIiwKICAgICAgImxvZyhUdXJub3ZlcikiLAogICAgICAibG9nKFR1cm5vdmVyKSB8IEFubi4gQ2hhbmdlIiwKICAgICAgIkREIGxvZyhUdXJub3ZlcikiKSkKICApICU+JQogIGdncGxvdChhZXMoeCA9IE1vbnRoLCB5ID0gVHVybm92ZXIpKSArCiAgZ2VvbV9saW5lKCkgKwogIGZhY2V0X2dyaWQodmFycyhUeXBlKSwgc2NhbGVzID0gImZyZWVfeSIpICsKICBsYWJzKHRpdGxlPSAiTW9udGhseSBBdXN0cmFsaWFuIHJldGFpbCBkYXRhIHwgVHVybm92ZXIiLCB5ID0gTlVMTCkKYGBgCgpUaGVyZSBjbGVhcmx5IHNlZW1zIHRvIGJlIGEgaW5jcmVhc2luZyB0cmVuZC4gSXQgYXBwZWFycyB0aGF0IHRoZXJlIGlzIGEgc2Vhc29uYWwgcGF0dGVybiBmb3IgdGhlIHNlcmllcyB0aGF0IGluY3JlYXNlcyBpbiBzaXplLCBtb3N0IG5vdGFibGUgZm9yIHRoZSBzcGlrZSBpbiBlYWNoIGxldmVsLiBSZWdhcmRsZXNzIGl0IGxhY2sgcHJlZGljdGFiaWxpdHkgZm9yIHRoZSBzdGF0aW9uYXJ5IHNlcmllcy4gTG9nIHRyYW5zZm9ybWF0aW9uIHN0YWJpbGl6ZXMgdGhlIGRhdGEgYnV0IG1haW50aWFucyB0aGUgaW5jcmVhc2luZyB0cmVuZCwgd2hpbGUgdGhlIHNlYXNvbmFsbHkgZGlmZmVyZW5jZWQgZGF0YSBvZiB0aGUgbG9nIHRyYW5zZm9ybWF0aW9uIHdhcyB0aGUgbW9zdCByZWFzb25hYmx5IHN0YWJpbGl6ZWQuCgojIDkuNgoKU2ltdWxhdGUgYW5kIHBsb3Qgc29tZSBkYXRhIGZyb20gc2ltcGxlIEFSSU1BIG1vZGVscy4KClVzZSB0aGUgZm9sbG93aW5nIFIgY29kZSB0byBnZW5lcmF0ZSBkYXRhIGZyb20gYW4gQVIoMSkgbW9kZWwgd2l0aCAkXGVtcHR5c2V0XzE9MC42JAoKYW5kICRcc2lnbWFeMj0xJC4gVGhlIHByb2Nlc3Mgc3RhcnRzIHdpdGggJHlfMT0wJC4KCmBgYHtyfQp5IDwtIG51bWVyaWMoMTAwKQplIDwtIHJub3JtKDEwMCkKZm9yKGkgaW4gMjoxMDApCiAgeVtpXSA8LSAwLjYqeVtpLTFdICsgZVtpXQpzaW0gPC0gdHNpYmJsZShpZHggPSBzZXFfbGVuKDEwMCksIHkgPSB5LCBpbmRleCA9IGlkeCkKYGBgCgpgYGB7cn0KaGVhZChzaW0pCmBgYAoKCiMjIGIuCgpQcm9kdWNlIGEgdGltZSBwbG90IGZvciB0aGUgc2VyaWVzLiBIb3cgZG9lcyB0aGUgcGxvdCBjaGFuZ2UgYXMgeW91IGNoYW5nZSAkXHBoaV8xJD8KCmBgYHtyfQoKc2ltICU+JSBhdXRvcGxvdCh5KSArCiAgbGFicyh0aXRsZSA9IGV4cHJlc3Npb24oIkFSKDEpIG1vZGVsIHdpdGgiIH4gcGhpWzFdIH4gIj0iIH4gMC42IH4gIiwiIH4gc2lnbWFeMiB+ICI9IiB+IDEgfiAiLCIgfiB5WzFdIH4gIj0iIH4gMCkpCgpgYGAKCmBgYHtyfQoKZm9yKGkgaW4gMjoxMDApCiAgeVtpXSA8LSAuOCp5W2ktMV0gKyBlW2ldCnNpbTEgPC0gdHNpYmJsZShpZHggPSBzZXFfbGVuKDEwMCksIHkgPSB5LCBpbmRleCA9IGlkeCkKCmZvcihpIGluIDI6MTAwKQogIHlbaV0gPC0gMC4yKnlbaS0xXSArIGVbaV0Kc2ltMiA8LSB0c2liYmxlKGlkeCA9IHNlcV9sZW4oMTAwKSwgeSA9IHksIGluZGV4ID0gaWR4KQoKZm9yKGkgaW4gMjoxMDApCiAgeVtpXSA8LSAtMS4wKnlbaS0xXSArIGVbaV0Kc2ltMyA8LSB0c2liYmxlKGlkeCA9IHNlcV9sZW4oMTAwKSwgeSA9IHksIGluZGV4ID0gaWR4KQoKZm9yKGkgaW4gMjoxMDApCiAgeVtpXSA8LSAxLjQqeVtpLTFdICsgZVtpXQpzaW00IDwtIHRzaWJibGUoaWR4ID0gc2VxX2xlbigxMDApLCB5ID0geSwgaW5kZXggPSBpZHgpCgoKCgpwbHQxIDwtIHNpbTEgJT4lIGF1dG9wbG90KHkpICsKIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJBUigxKSBtb2RlbCB3aXRoIiB+IHBoaVsxXSB+ICI9IiB+IDAuOCB+ICIsIiB+IHNpZ21hXjIgfiAiPSIgfiAxICkpCnBsdDIgPC0gc2ltMiAlPiUgYXV0b3Bsb3QoeSkgKwogIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJBUigxKSBtb2RlbCB3aXRoIiB+IHBoaVsxXSB+ICI9IiB+IDAuMiB+ICIsIiB+IHNpZ21hXjIgfiAiPSIgfiAxICkpCnBsdDMgPC0gc2ltMyAlPiUgYXV0b3Bsb3QoeSkgKwogIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJBUigxKSBtb2RlbCB3aXRoIiB+IHBoaVsxXSB+ICI9IiB+IC0xLjAgfiAiLCIgfiBzaWdtYV4yIH4gIj0iIH4gMSApKQpwbHQ0IDwtIHNpbTQgJT4lIGF1dG9wbG90KHkpICsKICBsYWJzKHRpdGxlID0gZXhwcmVzc2lvbigiQVIoMSkgbW9kZWwgd2l0aCIgfiBwaGlbMV0gfiAiPSIgfiAxLjQgfiAiLCIgfiBzaWdtYV4yIH4gIj0iIH4gMSApKQoKCmdyaWRFeHRyYTo6Z3JpZC5hcnJhbmdlKHBsdDEsIHBsdDIsIHBsdDMsIHBsdDQsIG5jb2wgPSAyLCBucm93ID0gMikKYGBgCgpBcyAkXHBoaV97MX0kIGluY3JlYXNlcyBvciBkZWNyZWFzZSwgdGhlIG1hZ25pdHVkZSBhbmQgd2F2ZWxlbmd0aCBtYXRjaGVzICAkXHBoaV97MX0kIGluY3JlYXNpbmcgYW5kIGRlY3JlYXNpbmcgaW4gdGhlIHNhbWUgZGlyZWN0aW9uLiBUaGlzIGlzIGFsc28gdHJ1ZSBmb3IgdGhlIG1hZ25pdHVkZSBhbmQgd2F2ZWxlbmd0aCBmb3IgdmFsdWVzIGJldHdlZW4gMCBhbmQgMSwgYnV0IGZvciAkXHBoaSQgdmFsdWVzIGdyZWF0ZXIgdGhhbiAxIHRoZSBwbG90IGVtdWxhdGVzIGFuIGV4cG9uZW50aWFsIGZ1bmN0aW9uICRmKHgpPWFeeCQsIHdoaWxlIHdhdmVsZW5ndGggc2hvcnRlbnMgZm9yIHZhbHVlcyBsZXNzIHRoYW4gMCwgbWVhbmluZyBhIGhpZ2hlciBmcmVxdWVuY3kgd2l0aCB2YXJ5aW5nIGFtcGxpdHVkZXMuCgoKIyMgYy4KCldyaXRlIHlvdXIgb3duIGNvZGUgdG8gZ2VuZXJhdGUgZGF0YSBmcm9tIGFuIE1BKDEpIG1vZGVsIHdpdGggJFx0aGV0YV8xJD0wLjYKYW5kICRcc2lnbWFeMj0xJC4KCmBgYHtyfQojIFJlZmVyZW5jZQojIHkgPC0gbnVtZXJpYygxMDApCiMgZSA8LSBybm9ybSgxMDApCiMgZm9yKGkgaW4gMjoxMDApCiMgICB5W2ldIDwtIDAuNip5W2ktMV0gKyBlW2ldCiMgc2ltIDwtIHRzaWJibGUoaWR4ID0gc2VxX2xlbigxMDApLCB5ID0geSwgaW5kZXggPSBpZHgpCmBgYAoKCmBgYHtyfQpmb3IoaSBpbiAyOjEwMCkKICB5W2ldIDwtIDAuNiplW2ktMV0gKyBlW2ldIAoKc2ltX21hIDwtIHRzaWJibGUoaWR4ID0gc2VxX2xlbigxMDApLCB5ID0geSwgaW5kZXggPSBpZHgpCmBgYAoKIyMgZC4KClByb2R1Y2UgYSB0aW1lIHBsb3QgZm9yIHRoZSBzZXJpZXMuIEhvdyBkb2VzIHRoZSBwbG90IGNoYW5nZSBhcyB5b3UgY2hhbmdlICRcdGhldGFfMSQ/CgpgYGB7cn0Kc2ltX21hICU+JSBhdXRvcGxvdCh5KSsKICBsYWJzKHRpdGxlID0gZXhwcmVzc2lvbigiQVIoMSkgbW9kZWwgd2l0aCIgfiBwaGlbMV0gfiAiPSIgfiAwLjYgfiAiLCIgfiBzaWdtYV4yIH4gIj0iIH4gMSkpCmBgYAoKYGBge3J9CiNjcmVhdGUgdGhlIGRhdGEKZm9yKGkgaW4gMjoxMDApCiAgeVtpXSA8LSAwKmVbaS0xXSArIGVbaV0gCnNpbTFfbWEgPC0gdHNpYmJsZShpZHggPSBzZXFfbGVuKDEwMCksIHkgPSB5LCBpbmRleCA9IGlkeCkKCmZvcihpIGluIDI6MTAwKQogIHlbaV0gPC0gLjgqZVtpLTFdICsgZVtpXSAKc2ltMl9tYSA8LSB0c2liYmxlKGlkeCA9IHNlcV9sZW4oMTAwKSwgeSA9IHksIGluZGV4ID0gaWR4KQoKZm9yKGkgaW4gMjoxMDApCiAgeVtpXSA8LSAtMS40KmVbaS0xXSArIGVbaV0gCnNpbTNfbWE8LSB0c2liYmxlKGlkeCA9IHNlcV9sZW4oMTAwKSwgeSA9IHksIGluZGV4ID0gaWR4KQoKZm9yKGkgaW4gMjoxMDApCiAgeVtpXSA8LSAxLjUqZVtpLTFdICsgZVtpXSAKc2ltNF9tYTwtIHRzaWJibGUoaWR4ID0gc2VxX2xlbigxMDApLCB5ID0geSwgaW5kZXggPSBpZHgpCgojY3JlYXRlIHRoZSBnZ3Bsb3Qgb2JqZWN0cwpwbHQ1IDwtIHNpbTFfbWEgJT4lIGF1dG9wbG90KHkpKwogIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJNQSgxKSBtb2RlbCB3aXRoIiB+IHBoaVsxXSB+ICI9IiB+IDAgfiAiLCIgfiBzaWdtYV4yIH4gIj0iIH4gMSkpCgoKcGx0NiA8LSBzaW0yX21hICU+JSBhdXRvcGxvdCh5KSsKICBsYWJzKHRpdGxlID0gZXhwcmVzc2lvbigiTUEoMSkgbW9kZWwgd2l0aCIgfiBwaGlbMV0gfiAiPSIgfiAwLjggfiAiLCIgfiBzaWdtYV4yIH4gIj0iIH4gMSkpCgpwbHQ3IDwtIHNpbTNfbWEgJT4lIGF1dG9wbG90KHkpKwogIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJNQSgxKSBtb2RlbCB3aXRoIiB+IHBoaVsxXSB+ICI9IiB+IC0xLjQgfiAiLCIgfiBzaWdtYV4yIH4gIj0iIH4gMSkpCgpwbHQ4IDwtIHNpbTRfbWEgJT4lIGF1dG9wbG90KHkpKwogIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJNQSgxKSBtb2RlbCB3aXRoIiB+IHBoaVsxXSB+ICI9IiB+IDEuNSB+ICIsIiB+IHNpZ21hXjIgfiAiPSIgfiAxKSkKCiNwbG90IHRoZW0gYWxsIHRvZ3RoZXIKZ3JpZEV4dHJhOjpncmlkLmFycmFuZ2UocGx0NSwgcGx0NiwgcGx0NywgcGx0OCwgbmNvbCA9IDIsIG5yb3cgPSAyKQpgYGAKCkFzICRcdGhldGEkIGNoYW5nZXMsIHRoZSBwbG90cyBiYXJlbHkgY2hhbmdlIHRvIGJlIGhvbmVzdC5UaGV5IGFsbCBzaG93IGEgc3RlYWR5IHZhcmlhbmNlIGFuZCBpbXBseWluZyB0aGUgTUEoMSkgc2VyaWVzIGFyZSBzdGF0aW9uYXJ5LiBBbXBsaXR1ZGUgbWluaW11bSBhbmQgbWF4aW11bSBoYXJkbHkgY2hhbmdlcyBhcyB3ZWxsIGFuZCB0aGVyZSBhcmUgbm8gc2hpZnRzIGluIHdhdmVsZW5ndGhzLgoKCiMjIGUuIAoKR2VuZXJhdGUgZGF0YSBmcm9tIGFuIEFSTUEoMSwxKSBtb2RlbCB3aXRoICRccGhpXzE9MC42JCwgJFx0aGV0YV8xPTAuNiQgYW5kICRcc2lnbWFeMj0xJAoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgY2xhc3Muc291cmNlID0gJ2ZvbGQtc2hvdyd9CmZvcihpIGluIDI6MTAwKQogIHlbaV0gPC0gMC42KnlbaS0xXSArIDAuNiplW2ktMV0gKyBlW2ldCgpzaW1fYXJtYTExIDwtIHRzaWJibGUoaWR4ID0gc2VxX2xlbigxMDApLCB5ID0geSwgaW5kZXggPSBpZHgpCmBgYAoKIyMgZi4KCkdlbmVyYXRlIGRhdGEgZnJvbSBhbiBBUigyKSBtb2RlbCB3aXRoICRccGhpXzE94oiSMC44JCwgJFxwaGlfMj0wLjMkIGFuZCAkXHNpZ21hXjI9MSQuIChOb3RlIHRoYXQgdGhlc2UgcGFyYW1ldGVycyB3aWxsIGdpdmUgYSBub24tc3RhdGlvbmFyeSBzZXJpZXMuKQoKYGBge3J9CnBoaV8xPC0tMC44CnBoaV8yPC0wLjMKCgpmb3IoaSBpbiAzOjEwMCkKICB5W2ldIDwtIC1waGlfMSp5W2ktMV0gKyBwaGlfMip5W2ktMl0gKyBlW2ldCgpzaW1fYXJfOF8zIDwtIHRzaWJibGUoaWR4ID0gc2VxX2xlbigxMDApLCB5ID0geSwgaW5kZXggPSBpZHgpCmBgYAoKCiMjIGcuCgpHcmFwaCB0aGUgbGF0dGVyIHR3byBzZXJpZXMgYW5kIGNvbXBhcmUgdGhlbS4KCmBgYHtyfQpwbHQ5IDwtIHNpbV9hcm1hMTEgJT4lIGF1dG9wbG90KHkpKwogIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJBUk1BKDEsMSkgbW9kZWwgd2l0aCIgfiBwaGlbMV0gfiAiPSIgfiAwLjYgfiAiLCIgfiB0aGV0YVsxXSB+ICI9IiB+IDAuNiB+ICIsIiB+IHNpZ21hXjIgfiAiPSIgfiAxKSkKCnBsdDEwIDwtIHNpbV9hcl84XzMgJT4lIGF1dG9wbG90KHkpKwogIGxhYnModGl0bGUgPSBleHByZXNzaW9uKCJBUk1BIG1vZGVsIHdpdGgiIH4gcGhpWzFdIH4gIj0iIH4gLTAuOCB+ICIsIiB+IHRoZXRhWzFdIH4gIj0iIH4gMC4zIH4gIiwiIH4gc2lnbWFeMiB+ICI9IiB+IDEpKQoKZ3JpZEV4dHJhOjpncmlkLmFycmFuZ2UocGx0OSwgcGx0MTAsIG5jb2wgPSAxLCBucm93ID0gMikKYGBgCgpBcm1hKDEsMSkgbW9kZWwgaGFzIGEgcGxvdCB0aGF0IGRvZXMgbm90IHNob3cgc2Vhc29uYWxpdHkgb3IgdHJlbmQsIHdpdGggYSBtYXhpbXVtIG9mIDMgYW5kIG1pbmltdW0gb2YgLTYsIHdoaWxlIHRoZSAybmQgQVJNQSBtb2RlbCBlbXVsYXRlcyBhIGV4cG9uZW50aWFsIGZ1Y250aW9uIGFzIG5vdGVkIGluIGEgcHJldmlvdXMgZXhhbXBsZS4KCiMgOS43CgpDb25zaWRlciBhdXNfYWlycGFzc2VuZ2VycywgdGhlIHRvdGFsIG51bWJlciBvZiBwYXNzZW5nZXJzIChpbiBtaWxsaW9ucykgZnJvbSBBdXN0cmFsaWFuIGFpciBjYXJyaWVycyBmb3IgdGhlIHBlcmlvZCAxOTcwLTIwMTEuCgpgYGB7cn0KbWF4KGF1c19haXJwYXNzZW5nZXJzJFllYXIpCgpgYGAKCmBgYHtyfQptaW4oYXVzX2FpcnBhc3NlbmdlcnMkWWVhcikKYGBgCgpgYGB7cn0KaGVhZChhdXNfYWlycGFzc2VuZ2VycykKYGBgCgoKIyMgYS4KClVzZSBBUklNQSgpIHRvIGZpbmQgYW4gYXBwcm9wcmlhdGUgQVJJTUEgbW9kZWwuIFdoYXQgbW9kZWwgd2FzIHNlbGVjdGVkLiBDaGVjayB0aGF0IHRoZSByZXNpZHVhbHMgbG9vayBsaWtlIHdoaXRlIG5vaXNlLiBQbG90IGZvcmVjYXN0cyBmb3IgdGhlIG5leHQgMTAgcGVyaW9kcy4KCmBgYHtyfQphdXNfYWlyX3BkXzcxXzExPC1hdXNfYWlycGFzc2VuZ2VycyAlPiUKICBmaWx0ZXIoWWVhcj49MTk3MSZZZWFyPD0yMDExKQoKZml0X2F1cyA8LSBhdXNfYWlyX3BkXzcxXzExJT4lCiAgbW9kZWwoQVJJTUEoUGFzc2VuZ2VycykpCgojZmluZCB0aGUgZml0CnJlcG9ydChmaXRfYXVzKQpgYGAKCmBgYHtyfQojZm9yZWNhc3QgMTAgcGVyaW9kcwpmaXRfYXVzICU+JSBmb3JlY2FzdChoPTEwKSAlPiUKICBhdXRvcGxvdChhdXNfYWlycGFzc2VuZ2VycykgKwogIGxhYnMoeSA9ICJQYXNzZW5nZXJzIChNaWxsaW9ucykiLCAKICAgICAgIHRpdGxlID0gIkF1c3RyYWxpYW4gQWlyIFBhc3NlbmdlcnMgKDE5NzEtMjAxMSkiLAogICAgICAgc3VidGl0bGUgPSAiMTAgWWVhciBGb3JlY2FzdCIpCmBgYAoKCmBgYHtyfQpmaXRfYXVzICU+JSBnZ190c3Jlc2lkdWFscygpICsgCiAgbGFicyh0aXRsZSA9ICJBdXN0cmFsaWFuIEFpciBQYXNzZW5nZXJzICgxOTcxLTIwMTEpIiwKICAgICAgIHN1YnRpdGxlID0gIkF1c3RyYWxpYW4gQWlyIFBhc3NlbmdlcnMgKDE5NzEtMjAxMSkiKQpgYGAKCkZ1bmN0aW9uIGBBUklNQSgpYCBhdXRvbWF0aWNhbGx5IHNlbGVjdGVkIGZvciBgYXVzX2FpcnBhc3NlbmdlcnNgIGRhdGEgbW9kZWwsIHdoaWNoIHdhcyBhbiBBUklNQSgwLDIsMSkuIEZ1bmN0aW9uIGBnZ190c3Jlc2lkdWFscygpYCBjb25maXJtcyB0aGVyZSBpcyB3aGl0ZSBub2lzZSBiYXNlIG9uIHRoZSByZXNpZHVhbHMuCgoKIyMgYi4KCldyaXRlIHRoZSBtb2RlbCBpbiB0ZXJtcyBvZiB0aGUgYmFja3NoaWZ0IG9wZXJhdG9yLgoKJHlfdCA9IC0wLjg5NjMgKiBcZXBzaWxvbl97dC0xfSArIFxlcHNpbG9uX3t0fSQKCiMjIGMuCgpQbG90IGZvcmVjYXN0cyBmcm9tIGFuIEFSSU1BKDAsMSwwKSBtb2RlbCB3aXRoIGRyaWZ0IGFuZCBjb21wYXJlIHRoZXNlIHRvIHBhcnQgYS4KCmBgYHtyfQpmaXRfYXVzXzAxMCA8LSBhdXNfYWlyX3BkXzcxXzExICU+JQogIG1vZGVsKEFSSU1BKFBhc3NlbmdlcnMgfiBwZHEoMCwxLDApKSkKCnJlcG9ydChmaXRfYXVzXzAxMCkKYGBgCgoKYGBge3J9CgojcGxvdCBmb3JlY2FzdApmaXRfYXVzXzAxMCAlPiUgZm9yZWNhc3QoaD0xMCkgJT4lCiAgYXV0b3Bsb3QoYXVzX2Fpcl9wZF83MV8xMSkgKwogIGxhYnMoeSA9ICJQYXNzZW5nZXJzIChNaWxsaW9ucyIsIAogICAgICAgdGl0bGUgPSAiQXVzdHJhbGlhbiBBaXIgUGFzc2VuZ2VycyAoMTk3MS0yMDExKSIsCiAgICAgICBzdWJ0aXRsZSA9ICIxMCBZZWFyIEZvcmVjYXN0IikKCiNwbG90IHJlc2lkdWFscwpmaXRfYXVzXzAxMCAlPiUgZ2dfdHNyZXNpZHVhbHMoKSArCiAgbGFicyh0aXRsZSA9ICJBdXN0cmFsaWFuIEFpciBQYXNzZW5nZXJzICgxOTcxLTIwMTEpIiwKICAgICAgIHN1YnRpdGxlID0gIjEwIFllYXIgRm9yZWNhc3QiKQpgYGAKClBhcnQgQSBmb3JlY2FzdHMgaGlnaGVyLCBhbmQgcGFydCBDIHJlc2lkdWFscyBzaG93IHdoaXRlIG5vaXNlLgoKIyMgZC4KClBsb3QgZm9yZWNhc3RzIGZyb20gYW4gQVJJTUEoMiwxLDIpIG1vZGVsIHdpdGggZHJpZnQgYW5kIGNvbXBhcmUgdGhlc2UgdG8gcGFydHMgYSBhbmQgYy4gUmVtb3ZlIHRoZSBjb25zdGFudCBhbmQgc2VlIHdoYXQgaGFwcGVucy4KCmBgYHtyfQpmaXRfYXVzMjEyIDwtIGF1c19haXJfcGRfNzFfMTEgJT4lCiAgbW9kZWwoQVJJTUEoUGFzc2VuZ2VycyB+IHBkcSgyLDEsMikpKQoKYGBgCgpgYGB7cn0KZml0X2F1czIxMl9ub19jb25zdCA8LSBhdXNfYWlycGFzc2VuZ2VycyAlPiUKICBtb2RlbChBUklNQShQYXNzZW5nZXJzIH4gcGRxKDIsMSwyKSxpbmNsdWRlLmNvbnN0YW50PUZBTFNFKSkgCmBgYAoKCmBgYHtyfQpyZXBvcnQoZml0X2F1czIxMikKYGBgCgoKCmBgYHtyfQojcGxvdCBmb3JlY2FzdApmaXRfYXVzMjEyICU+JSBmb3JlY2FzdChoPTEwKSAlPiUKICBhdXRvcGxvdChhdXNfYWlyX3BkXzcxXzExKSArCiAgbGFicyh5ID0gIlBhc3NlbmdlcnMgKE1pbGxpb25zIiwgCiAgICAgICB0aXRsZSA9ICJBdXN0cmFsaWFuIEFpciBQYXNzZW5nZXJzICgxOTcxLTIwMTEpIiwKICAgICAgIHN1YnRpdGxlID0gIjEwIFllYXIgRm9yZWNhc3QiKQoKI3Bsb3QgcmVzaWR1YWxzCmZpdF9hdXMyMTIgJT4lIGdnX3RzcmVzaWR1YWxzKCkgKwogIGxhYnModGl0bGUgPSAiQXVzdHJhbGlhbiBBaXIgUGFzc2VuZ2VycyAoMTk3MS0yMDExKSIsCiAgICAgICBzdWJ0aXRsZSA9ICIxMCBZZWFyIEZvcmVjYXN0IikKYGBgCgpUaGlzIG1vZGVsIGNvbXBhcmVkIHRvIHBhcnQgYSBhbmQgYiBzZWVtcyB3b3JzZSBhbmQgaGFzIHdoaXRlIG5vaXNlLiBSZW1vdmluZyB0aGUgY29uc3RhbnQgcHJvZHVjZWQgYW4gZXJyb3IuCgojIyBlLgoKUGxvdCBmb3JlY2FzdHMgZnJvbSBhbiBBUklNQSgwLDIsMSkgbW9kZWwgd2l0aCBhIGNvbnN0YW50LiBXaGF0IGhhcHBlbnM/CgpzZWN0aW9uIDkuNyBhIGRvZXMgdGhpcyBhbHJlYWR5LiBJdCBpcyB0aGUgYmVzdCBmaXR0aW5nIG1vZGVsLgoKIyA5LjgKCkZvciB0aGUgVW5pdGVkIFN0YXRlcyBHRFAgc2VyaWVzIChmcm9tIGdsb2JhbF9lY29ub215KToKCmBgYHtyfQpkZl91czwtZ2xvYmFsX2Vjb25vbXklPiUKICAgICAgICBmaWx0ZXIoQ291bnRyeSA9PSJVbml0ZWQgU3RhdGVzIikKYGBgCgoKIyMgYS4KCmlmIG5lY2Vzc2FyeSwgZmluZCBhIHN1aXRhYmxlIEJveC1Db3ggdHJhbnNmb3JtYXRpb24gZm9yIHRoZSBkYXRhOwoKYGBge3J9CgpkZl91cyAlPiUgYXV0b3Bsb3QoR0RQKSArCiAgbGFicyh0aXRsZSA9ICJVUyBHRFAiKQpgYGAKCk5vIG5lZWQgZm9yIGEgdHJhbnNmb3JtYXRpb24sIHRoZSBkYXRhIGRvZXNuJ3QgdmFyeS4KCiMjIGIuCgpmaXQgYSBzdWl0YWJsZSBBUklNQSBtb2RlbCB0byB0aGUgdHJhbnNmb3JtZWQgZGF0YSB1c2luZyBBUklNQSgpOwoKYGBge3J9CmZpdF91cyA8LSBkZl91cyAlPiUKICBtb2RlbCgKICAgIGFyaW1hID0gQVJJTUEoR0RQLCBzdGVwd2lzZSA9IEZBTFNFLCBhcHByb3ggPSBGQUxTRSkpCgpyZXBvcnQoZml0X3VzKQpgYGAKCk1vZGVsOiBBUklNQSgwLDIsMikgYWNjb3JkaW5nIHRvIEFSSU1BKCkKCiMjIGMuCgp0cnkgc29tZSBvdGhlciBwbGF1c2libGUgbW9kZWxzIGJ5IGV4cGVyaW1lbnRpbmcgd2l0aCB0aGUgb3JkZXJzIGNob3NlbjsKCmBgYHtyfQpkZl91cyAlPiUKICBmZWF0dXJlcyhHRFAsIHVuaXRyb290X25kaWZmcykKCmRmX3VzICU+JQogIGdnX3RzZGlzcGxheShHRFAsIHBsb3RfdHlwZSA9ICdwYXJ0aWFsJykKCmZpdF91czIyMiA8LSBkZl91cyAlPiUKICBtb2RlbChBUklNQShHRFAgfiBwZHEoMiwyLDIpKSkKCmZpdF91czExMiA8LSBkZl91cyAlPiUKICBtb2RlbChBUklNQShHRFAgfiBwZHEoMSwxLDIpKSkKCmZpdF91czIxMSA8LSBkZl91cyAlPiUKICBtb2RlbChBUklNQShHRFAgfiBwZHEoMiwxLDEpKSkKCmZpdF91czIyMSA8LSBkZl91cyAlPiUKICBtb2RlbChBUklNQShHRFAgfiBwZHEoMiwyLDEpKSkKCnJlcG9ydChmaXRfdXMyMjIpCnJlcG9ydChmaXRfdXMxMTIpCnJlcG9ydChmaXRfdXMyMTEpCnJlcG9ydChmaXRfdXMyMjEpCmBgYAoKLSBBSUMsIEFJQ2MsIGFuZCBCSUMgdmFsdWVzIGluY3JlYXNlIHdoZW4gaW5jcmVhc2luZyBxIHZhbHVlIGZyb20gMiB0byAxLgotIEFJQywgQUlDYywgYW5kIEJJQyB2YWx1ZXMgZGVjcmVhc2VkIHdoZW4gZGVjcmVhc2luZyBxIHZhbHVlcy4KLSAyLDIsMiBpcyB0aGUgYmVzdCBmaXQgZnJvbSB0aGUgY29tYmluYXRpb25zLgoKCiMjIGQuCgpjaG9vc2Ugd2hhdCB5b3UgdGhpbmsgaXMgdGhlIGJlc3QgbW9kZWwgYW5kIGNoZWNrIHRoZSByZXNpZHVhbCBkaWFnbm9zdGljczsKCkFSSU1BKDIsMiwyKSAtIEJ1dCB0aGUgQUNGIGxvb2tzIGxpa2Ugd2hpdGUgbm9pc2UgYW5kIHJlc2lkdWFscyBpcyBsZWZ0IHNrZXdlZAoKYGBge3J9CmZpdF91czIyMiAlPiUgZ2dfdHNyZXNpZHVhbHMoKSArCiAgbGFicyh0aXRsZSA9ICJBUklNQSgyLDIsMikiKQpgYGAKCgojIyBlLgoKcHJvZHVjZSBmb3JlY2FzdHMgb2YgeW91ciBmaXR0ZWQgbW9kZWwuIERvIHRoZSBmb3JlY2FzdHMgbG9vayByZWFzb25hYmxlPwoKYGBge3J9CmZpdF91czIyMiAlPiUgZm9yZWNhc3QoaD0xMCkgJT4lCiAgYXV0b3Bsb3QoZGZfdXMpICsKICBsYWJzKHRpdGxlID0gIkFSSU1BKDIsMiwyKSIpCmBgYAoKUHJldHR5IG11Y2ggcmVhc29uYWJsZSBiYXNlIG9uIHdoYXQgb3VyIHByZXZpb3VzIGRhdGEgc2hvd2VkLgoKIyMgZi4KCmNvbXBhcmUgdGhlIHJlc3VsdHMgd2l0aCB3aGF0IHlvdSB3b3VsZCBvYnRhaW4gdXNpbmcgRVRTKCkgKHdpdGggbm8gdHJhbnNmb3JtYXRpb24pLgoKYGBge3J9CmZpdF9ldHMgPC0gZGZfdXMgJT4lIAogIG1vZGVsKEVUUyhHRFApKQoKcmVwb3J0KGZpdF9ldHMpCmBgYAoKYGBge3J9CmZpdF9ldHMgJT4lIGZvcmVjYXN0KGggPSAxMCkgJT4lCiAgYXV0b3Bsb3QoZGZfdXMpIApgYGAKCmBgYHtyfQpmaXRfZXRzICU+JSBnZ190c3Jlc2lkdWFscygpCmBgYAoKCgoKVGhlIGNvbXBhcmlzb24gZm9yIEFSSU1BKDIsMiwyKSBBSUNjPTMwNTMuNDcgIHZzLiBFVFMoTSxBLE4pIEFJQ2M9MzE5MS45NDEsIEFSSU1BKDIsMiwyKSBwZXJmb3JtcyBiZXR0ZXIgYW5kIGZvcmVjYXN0cyBhcmUgZ29vZCBmb3IgYm90aCBjb25zaWRlcmluZyB0aGUgQUNGIHBsb3RzIGxhY2sgY29ycmVsYXRpb24uCgo=