Question 11 Page 303
# Set the parameters
num_bulbs <- 100
lifetime <- 1000
# Expected time
lifetime / num_bulbs
## [1] 10
Question 14 Page 303
Given that \(X_1\) and \(X_2\) are independent random variables,
each with an exponential density function with parameter \(\lambda\), we aim to find the density
function \(f_Z(z)\) for \(Z = X_1 - X_2\).
Case 1: \(z < 0\)
\[
\begin{aligned}
f_Z(z) &= \int_{-\infty}^{z} \lambda e^{-\lambda x} \cdot \lambda
e^{\lambda (z - x)} \, dx \\
&= \lambda^2 e^{\lambda z} \int_{-\infty}^{z} e^{-2\lambda x} \, dx
\\
&= \lambda^2 e^{\lambda z} \left[ \frac{-1}{2\lambda} e^{-2\lambda
x} \right]_{-\infty}^{z} \\
&= \frac{1}{2} \lambda e^{\lambda z}
\end{aligned}
\]
Case 2: \(z \geq 0\)
\[
\begin{aligned}
f_Z(z) &= \int_{-\infty}^{z} \lambda e^{-\lambda x} \cdot \lambda
e^{\lambda (z - x)} \, dx \\
&= \lambda^2 e^{\lambda z} \int_{-\infty}^{z} e^{-2\lambda x} \, dx
\\
&= \lambda^2 e^{\lambda z} \left[ \frac{-1}{2\lambda} e^{-2\lambda
x} \right]_{-\infty}^{z} \\
&= \frac{1}{2} \lambda e^{-\lambda z}
\end{aligned}
\]
Now, combining both results, we get:
\[
f_Z(z) = \begin{cases}
\frac{1}{2} \lambda e^{\lambda z} & \text{for } z < 0 \\
\frac{1}{2} \lambda e^{-\lambda z} & \text{for } z \geq 0
\end{cases}
\]
\[
f_Z(z) = \frac{1}{2} \lambda e^{-\lambda |z|}
\]
This matches the given density function for \(f_Z(z)\), verifying the result for both
negative and positive values of \(z\).
Question 1 Page 320
mu <- 10
variance <- 100/3
# k for different probabilities
k_values <- c(2, 5, 9, 20)
# Upper bounds for the probabilities using Chebyshev's Inequality
prob_bounds <- variance / k_values^2
# Output the results
for (i in 1:length(k_values)) {
cat("Upper bound for P(|X - 10| ≥", k_values[i], "):", prob_bounds[i], "\n")
}
## Upper bound for P(|X - 10| ≥ 2 ): 8.333333
## Upper bound for P(|X - 10| ≥ 5 ): 1.333333
## Upper bound for P(|X - 10| ≥ 9 ): 0.4115226
## Upper bound for P(|X - 10| ≥ 20 ): 0.08333333
…
LS0tDQp0aXRsZTogIldlZWsgOCBwcm9iYWJpbGl0eSINCmF1dGhvcjogIktvc3NpIEFrcGxha2EiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KDQoNCiMgUXVlc3Rpb24gMTEgUGFnZSAzMDMNCg0KYGBge3J9DQojIFNldCB0aGUgcGFyYW1ldGVycw0KbnVtX2J1bGJzIDwtIDEwMA0KbGlmZXRpbWUgPC0gMTAwMA0KDQojIEV4cGVjdGVkIHRpbWUNCmxpZmV0aW1lIC8gbnVtX2J1bGJzICANCmBgYA0KDQoNCiMgUXVlc3Rpb24gMTQgUGFnZSAzMDMgDQoNCg0KDQpHaXZlbiB0aGF0IFwoWF8xXCkgYW5kIFwoWF8yXCkgYXJlIGluZGVwZW5kZW50IHJhbmRvbSB2YXJpYWJsZXMsIGVhY2ggd2l0aCBhbiBleHBvbmVudGlhbCBkZW5zaXR5IGZ1bmN0aW9uIHdpdGggcGFyYW1ldGVyIFwoXGxhbWJkYVwpLCB3ZSBhaW0gdG8gZmluZCB0aGUgZGVuc2l0eSBmdW5jdGlvbiBcKGZfWih6KVwpIGZvciBcKFogPSBYXzEgLSBYXzJcKS4NCg0KIyMgQ2FzZSAxOiBcKCB6IDwgMCBcKQ0KDQpcWw0KXGJlZ2lue2FsaWduZWR9DQpmX1ooeikgJj0gXGludF97LVxpbmZ0eX1ee3p9IFxsYW1iZGEgZV57LVxsYW1iZGEgeH0gXGNkb3QgXGxhbWJkYSBlXntcbGFtYmRhICh6IC0geCl9IFwsIGR4IFxcDQomPSBcbGFtYmRhXjIgZV57XGxhbWJkYSB6fSBcaW50X3stXGluZnR5fV57en0gZV57LTJcbGFtYmRhIHh9IFwsIGR4IFxcDQomPSBcbGFtYmRhXjIgZV57XGxhbWJkYSB6fSBcbGVmdFsgXGZyYWN7LTF9ezJcbGFtYmRhfSBlXnstMlxsYW1iZGEgeH0gXHJpZ2h0XV97LVxpbmZ0eX1ee3p9IFxcDQomPSBcZnJhY3sxfXsyfSBcbGFtYmRhIGVee1xsYW1iZGEgen0NClxlbmR7YWxpZ25lZH0NClxdDQoNCiMjIENhc2UgMjogXCggeiBcZ2VxIDAgXCkNCg0KXFsNClxiZWdpbnthbGlnbmVkfQ0KZl9aKHopICY9IFxpbnRfey1caW5mdHl9Xnt6fSBcbGFtYmRhIGVeey1cbGFtYmRhIHh9IFxjZG90IFxsYW1iZGEgZV57XGxhbWJkYSAoeiAtIHgpfSBcLCBkeCBcXA0KJj0gXGxhbWJkYV4yIGVee1xsYW1iZGEgen0gXGludF97LVxpbmZ0eX1ee3p9IGVeey0yXGxhbWJkYSB4fSBcLCBkeCBcXA0KJj0gXGxhbWJkYV4yIGVee1xsYW1iZGEgen0gXGxlZnRbIFxmcmFjey0xfXsyXGxhbWJkYX0gZV57LTJcbGFtYmRhIHh9IFxyaWdodF1fey1caW5mdHl9Xnt6fSBcXA0KJj0gXGZyYWN7MX17Mn0gXGxhbWJkYSBlXnstXGxhbWJkYSB6fQ0KXGVuZHthbGlnbmVkfQ0KXF0NCg0KTm93LCBjb21iaW5pbmcgYm90aCByZXN1bHRzLCB3ZSBnZXQ6DQoNClxbDQpmX1ooeikgPSBcYmVnaW57Y2FzZXN9IA0KICAgICAgXGZyYWN7MX17Mn0gXGxhbWJkYSBlXntcbGFtYmRhIHp9ICYgXHRleHR7Zm9yIH0geiA8IDAgXFwNCiAgICAgIFxmcmFjezF9ezJ9IFxsYW1iZGEgZV57LVxsYW1iZGEgen0gJiBcdGV4dHtmb3IgfSB6IFxnZXEgMCANCiAgIFxlbmR7Y2FzZXN9DQpcXQ0KDQpcWw0KZl9aKHopID0gXGZyYWN7MX17Mn0gXGxhbWJkYSBlXnstXGxhbWJkYSB8enx9DQpcXQ0KDQpUaGlzIG1hdGNoZXMgdGhlIGdpdmVuIGRlbnNpdHkgZnVuY3Rpb24gZm9yIFwoIGZfWih6KSBcKSwgdmVyaWZ5aW5nIHRoZSByZXN1bHQgZm9yIGJvdGggbmVnYXRpdmUgYW5kIHBvc2l0aXZlIHZhbHVlcyBvZiBcKCB6IFwpLg0KDQoNCiMjIFF1ZXN0aW9uIDEgUGFnZSAzMjANCg0KYGBge3J9DQptdSA8LSAxMA0KdmFyaWFuY2UgPC0gMTAwLzMNCg0KIyBrIGZvciBkaWZmZXJlbnQgcHJvYmFiaWxpdGllcw0Ka192YWx1ZXMgPC0gYygyLCA1LCA5LCAyMCkNCg0KIyBVcHBlciBib3VuZHMgZm9yIHRoZSBwcm9iYWJpbGl0aWVzIHVzaW5nIENoZWJ5c2hldidzIEluZXF1YWxpdHkNCnByb2JfYm91bmRzIDwtIHZhcmlhbmNlIC8ga192YWx1ZXNeMg0KDQojIE91dHB1dCB0aGUgcmVzdWx0cw0KZm9yIChpIGluIDE6bGVuZ3RoKGtfdmFsdWVzKSkgew0KICBjYXQoIlVwcGVyIGJvdW5kIGZvciBQKHxYIC0gMTB8IOKJpSIsIGtfdmFsdWVzW2ldLCAiKToiLCBwcm9iX2JvdW5kc1tpXSwgIlxuIikNCn0NCg0KYGBgDQoNCi4uLg0KDQo=