library(readxl)
## Warning: package 'readxl' was built under R version 4.3.2
data <- read_xlsx("D:/Statistika dan Sains Data/Semester 4/Analisis Regresi/Anreg 4.3.xlsx")
## New names:
## • `` -> `...1`
data
## # A tibble: 24 × 3
## ...1 Units Minutes
## <dbl> <dbl> <dbl>
## 1 1 1 23
## 2 2 2 29
## 3 3 3 49
## 4 4 4 64
## 5 5 4 74
## 6 6 5 87
## 7 7 6 96
## 8 8 6 97
## 9 9 7 109
## 10 10 8 119
## # ℹ 14 more rows
membuat model linear regresi
model <- lm(Minutes~Units, data<- data)
summary(model)
##
## Call:
## lm(formula = Minutes ~ Units, data = data <- data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31.603 -14.801 -0.045 17.335 29.092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2127 7.9853 4.66 0.00012 ***
## Units 9.9695 0.7218 13.81 2.56e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.75 on 22 degrees of freedom
## Multiple R-squared: 0.8966, Adjusted R-squared: 0.8919
## F-statistic: 190.7 on 1 and 22 DF, p-value: 2.556e-12
Y=37.2127+9.9695X
Ketika x mengalami kenaikan satu satuan maka y mengalami kenaikan sebesar 9.9695 Ketika x sama dengan 0 maka dugaan rataan y adalah 37.2127