PRAKTIKUM TM-4
- SIGN TEST
#SOAL 1
Oks= c(1.5, 2.2, 0.9, 1.3, 2.0,1.6, 1.8, 1.5, 2.0, 1.2, 1.7)
library(BSDA)
## Warning: package 'BSDA' was built under R version 4.3.3
## Loading required package: lattice
##
## Attaching package: 'BSDA'
## The following object is masked from 'package:datasets':
##
## Orange
SIGN.test(Oks, md = 1.8, alternative = "two.sided")
##
## One-sample Sign-Test
##
## data: Oks
## s = 3, p-value = 0.3438
## alternative hypothesis: true median is not equal to 1.8
## 95 percent confidence interval:
## 1.271273 2.000000
## sample estimates:
## median of x
## 1.6
##
## Achieved and Interpolated Confidence Intervals:
##
## Conf.Level L.E.pt U.E.pt
## Lower Achieved CI 0.9346 1.3000 2
## Interpolated CI 0.9500 1.2713 2
## Upper Achieved CI 0.9883 1.2000 2
#SOAL 2
library(BSDA)
ban_jenis_1 = c(4.2, 4.7, 6.6, 7, 6.7, 4.5, 5.7, 6, 7.4, 4.9, 6.1, 5.2, 5.7, 6.9, 6.8, 4.9)
ban_jenis_2 = c(4.1, 4.9, 6.2, 6.9, 6.8, 4.4, 5.7, 5.8, 6.9, 4.9, 6, 4.9, 5.3, 6.5, 7.1, 4.8)
hasil_st_ban = SIGN.test(ban_jenis_1, ban_jenis_2, alternative= "less")
print(hasil_st_ban)
##
## Dependent-samples Sign-Test
##
## data: ban_jenis_1 and ban_jenis_2
## S = 11, p-value = 0.9935
## alternative hypothesis: true median difference is less than 0
## 95 percent confidence interval:
## -Inf 0.2826053
## sample estimates:
## median of x-y
## 0.1
##
## Achieved and Interpolated Confidence Intervals:
##
## Conf.Level L.E.pt U.E.pt
## Lower Achieved CI 0.8949 -Inf 0.2000
## Interpolated CI 0.9500 -Inf 0.2826
## Upper Achieved CI 0.9616 -Inf 0.3000
- WILCOXON TEST
wilcox.test(Oks, mu = 1.8, alternative = "two.sided")
## Warning in wilcox.test.default(Oks, mu = 1.8, alternative = "two.sided"):
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(Oks, mu = 1.8, alternative = "two.sided"):
## cannot compute exact p-value with zeroes
##
## Wilcoxon signed rank test with continuity correction
##
## data: Oks
## V = 13, p-value = 0.1522
## alternative hypothesis: true location is not equal to 1.8
- BINOMIAL TEST
binom.test(x=8, n=20, p=1/2)
##
## Exact binomial test
##
## data: 8 and 20
## number of successes = 8, number of trials = 20, p-value = 0.5034
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.1911901 0.6394574
## sample estimates:
## probability of success
## 0.4
- CHI-SQUARE
zodiac_signs <- c("Aries", "Taurus", "Libra", "Gemini", "Cancer", "Leo", "Virgo", "Scorpio", "Sagittarius", "Capricorn", "Aquarius", "Pisces")
respondent_counts<- c(29, 24, 22, 19, 21, 18, 19, 20, 23, 18, 20, 23)
n <- sum(respondent_counts)
expected_counts <- rep(n/length(respondent_counts), length(respondent_counts)) / n
chisq_result <- chisq.test(respondent_counts, p = expected_counts)
chisq_result
##
## Chi-squared test for given probabilities
##
## data: respondent_counts
## X-squared = 5.0938, df = 11, p-value = 0.9265
- KOLMOGOROV SMIRNOV