OPM Report V2

Dataset information

Number of Agencies in Dataset

## 
##     AB     AF     AG     AJ     AK     AL     AM     AR     AU     BD     BF     BG     BO     BT     CC     CM     CT     CU     DD     DJ     DL     DN     DR     EB     ED     EE     EP     EW     FC     FJ     FM     FQ     FT     FY     GG     GS     GW     HB     HE     HF     HP     HS     HU     IB     IF     IG     IN     KS     LF     MC     MR     NF     NL     NM     NN     NP     NQ     NU     NV     OM     OS     PJ     RE     RF     RR     SB     SE     SI     SK     SN     SS     ST     SW     SZ     TB     TC     TD     TN     TR     TX     VA 
##     63 338448 422545    242    213    191  26229 607353    172    701    388   4389   1920     43     44 220996   2835   8265 299767 325521 113871 109224  12289    793  36200  15078 105795    126   6992    148    680   4717   6308    291    155  95118    264     41 536710   2393     52 753190  64924   8414    148    246 332937   2445    343    252    919  10516   7231     43 112441     63  20420  32349 430117  37085    181    197     68    131   3363  21662  25622  37274   1152   3015    358  89236     46 249971    470    655 241172    305 552331    368 214022
##       
##           AB    AF    AG    AJ    AK    AL    AM    AR    AU    BD    BF    BG    BO    BT    CC    CM    CT    CU    DD    DJ    DL    DN    DR    EB    ED    EE    EP    EW    FC    FJ    FM    FQ    FT    FY    GG    GS    GW    HB    HE    HF    HP    HS    HU    IB    IF    IG    IN    KS    LF    MC    MR    NF    NL    NM    NN    NP    NQ    NU    NV    OM    OS    PJ    RE    RF    RR    SB    SE    SI    SK    SN    SS    ST    SW    SZ    TB    TC    TD    TN    TR    TX    VA
##   2010    26 10560 13911    87    97    48   749 19413    81   161    68   564   267    22    21 14956   301   576  8781 18357  4273  6648   687     0  2350  1088  8445    35   824    22   197   720   478   291     0  2727    89    21 25601     0    25 10189  3591   986    23    51 28322   352   185    87   919   591   918    22  8593    31  1986  2503 12378  2644    33    46    36    60   634  1501  2151    24   210   423    89  1871    24  8940   250   170  9617   110 16712    99  2537
##   2011     0  8775 14588    97   116    49  1243 18827    91   143    84   555   286    21    23 18071   387   510  8006 21488  7482  5613   971   163  2891  1252  8584    26   862    33   176   556   597     0     0  2491   175    20 23102   314    27 15506  5365  1089    22    73  7051   405   158    88     0   728   665    21  9240    32  1855  2612 13337  3463    33    49    32    71   611  1621   809    47   230   384   107  2422    22  7069   220   168 10203    88 17985    93 13707
##   2012     0 61907 42569     0     0     0  2229 77948     0     0     0   579     0     0     0 19872     0   724 25003 35023  7653  6467   748     0  2677  1263  8847     0   725     0     0   569   541     0     0  6592     0     0 29146     0     0 82218  4741   829     0     0 27287     0     0     0     0   789   787     0  9296     0  2085  2709 67604  3140     0     0     0     0   590  1401  2492  4764     0     0     0 10379     0 41409     0     0 25892     0 54890     0 13303
##   2013     0 12129 13256     0     0    47  2266 22130     0   135    82   401     0     0     0  9447   355     0 11230 17004  5205  6707   893   228  2658  1180  3924    31   814    30   179   714   565     0    55  8429     0     0 32329   424     0 39090  3741  1156    34    61 18396   452     0     0     0   888   726     0  9985     0  1617  2509 19518  2929    42    62     0     0     0  1511  2422  3918     0   376    89  2551     0  8345     0     0 23204   107 50010    98 29893
##   2014    37 19168 20162     0     0    47  2045 22414     0   124    73     0     0     0     0  9892   397     0 13982 17213 10953  6515     0   185  2415     0  3863    34   702    32   128     0     0     0    53  8567     0     0 32806   393     0 42798  3890     0    36    61 18384   418     0     0     0     0     0     0  9430     0     0  2467 19461  3596    41    40     0     0     0     0  2472 13318     0   323    73  3776     0  9540     0     0 11673     0 51038    78 27639
##   2015     0 18776 20624    58     0     0  2004 21003     0   138    81     0     0     0     0 10129     0     0 15249 20218 11359  8469     0   217  2701     0  4456     0   573    31     0     0     0     0    47  7874     0     0 36772   350     0 43090  5404     0    33     0 26366   492     0    77     0     0     0     0  9936     0     0  2675 17891  3378    32     0     0     0     0     0  1921 15203     0     0     0  4060     0 10527     0     0 15598     0 51700     0 32236
##   2016     0 15586 22878     0     0     0  2285 17086     0     0     0   569   351     0     0  9784     0   661 13597 16501 11262  8075  1150     0  2862  1510 10156     0   648     0     0   618   641     0     0  7081     0     0 40345     0     0 46991  5464   904     0     0 23098     0     0     0     0   854   882     0 11202     0  1870  2152 12361  3196     0     0     0     0   320  1383  3213     0     0     0     0  5256     0  8907     0     0 14871     0 45497     0 30313
##   2017     0 16899 48953     0     0     0  2087 21850     0     0     0   610   343     0     0 10480   508   665 15922 16126  8837  8589  1070     0  2831  1416  9414     0   715     0     0   542   612     0     0  7532     0     0 43086     0     0 47414  4960  1070     0     0 25867     0     0     0     0   910   850     0 11814     0  1861  2442 16022  2914     0     0     0     0   449  1512  3526     0     0   537     0  4294     0  8501     0     0 16835     0 46368     0 64394
##   2018     0 33351 43352     0     0     0  1837 70005     0     0     0   526   338     0     0 20725   476   633 30877 30978  8075  8624  1115     0  2592  1379  7972     0   594     0     0   470   638     0     0  7157     0     0 43029   412     0 73899  4628   829     0     0 28290   326     0     0     0   940   859     0 11568     0  1743  2308 47882  3069     0     0     0     0   413  1543  3394     0   355   520     0  7228     0 26318     0     0 21552     0 42027     0     0
##   2019     0 31348 36529     0     0     0  2010 85639     0     0     0   585   335     0     0 19847   411   891 31418 28199  7949  8565  1162     0  2167  1235  8352     0   535     0     0   528   625     0     0  7095     0     0 51703   500     0 76883  3763   765     0     0 26815     0     0     0     0   865   768     0 10789     0  1697  2174 51318  3049     0     0     0     0   346  1388  3222     0   357   452     0  9713     0 27933     0   317 20414     0 41771     0     0
##   2020     0 35476 33399     0     0     0  2097 82155     0     0     0     0     0     0     0 21310     0   926 36435 29013  7187  8904  1148     0  2367  1311  8115     0     0     0     0     0     0     0     0  7332     0     0 50393     0     0 84704  4509     0     0     0 26114     0     0     0     0   927   776     0 10588     0  1494  2166 52153  1343     0     0     0     0     0  1333     0     0     0     0     0 10933     0 28651     0     0 22246     0 40347     0     0
##   2021     0 13848 20634     0     0     0  1625 35772     0     0     0     0     0     0     0  9568     0   867 17055 15454  6872  7980  1071     0  2218   963  6684     0     0     0     0     0     0     0     0  6651     0     0 19061     0     0 25638  4361   786     0     0 13984     0     0     0     0   905     0     0     0     0  1303  1835 21101  1253     0     0     0     0     0  1382     0     0     0     0     0  9431     0 11546     0     0  8454     0 15860     0     0
##   2022     0 31191 43332     0     0     0  1769 60278     0     0     0     0     0     0     0 21009     0   904 31888 25866  7550  8587  1079     0  2698  1102  7757     0     0     0     0     0   782     0     0  7498     0     0 50317     0     0 73070  4866     0     0     0 27014     0     0     0     0  1049     0     0     0     0  1407  1889 39890  1516     0     0     0     0     0  3524     0     0     0     0     0  7962     0 26528     0     0 19989     0 35764     0     0
##   2023     0 29434 48358     0     0     0  1983 52833     0     0     0     0     0     0     0 25906     0   908 40324 34081  9214  9481  1195     0  2773  1379  9226     0     0     0     0     0   829     0     0  8092     0     0 59020     0     0 91700  5641     0     0     0 35949     0     0     0     0  1070     0     0     0     0  1502  1908 39201  1595     0     0     0     0     0  3563     0     0     0     0     0  9360     0 25757     0     0 20624     0 42362     0     0
## [1] "# Of agencies: 81"

Reliabilities

## 
##  Pearson's product-moment correlation
## 
## data:  mut_1 and mut_2
## t = 2070.5, df = 5839001, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6501893 0.6511247
## sample estimates:
##       cor 
## 0.6506572
## 
## Reliability analysis   
## Call: psych::alpha(x = as.data.frame(cbind(voice_1, voice_2, voice_3)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N     ase mean sd median_r
##       0.81      0.81    0.74      0.58 4.2 0.00013  3.6  1     0.56
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.81  0.81  0.81
## Duhachek  0.81  0.81  0.81
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## voice_1      0.70      0.70    0.54      0.54 2.3  0.00023    NA  0.54
## voice_2      0.79      0.79    0.65      0.65 3.8  0.00016    NA  0.65
## voice_3      0.72      0.72    0.56      0.56 2.5  0.00022    NA  0.56
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean  sd
## voice_1 6480807  0.87  0.87  0.77   0.69  3.6 1.2
## voice_2 6269837  0.83  0.82  0.66   0.60  3.7 1.2
## voice_3 6310223  0.86  0.86  0.76   0.68  3.4 1.1
## 
## Non missing response frequency for each item
##            1    2    3    4    5 miss
## voice_1 0.07 0.14 0.17 0.38 0.25 0.01
## voice_2 0.08 0.08 0.17 0.37 0.29 0.04
## voice_3 0.06 0.17 0.22 0.38 0.16 0.04

Correlations

Analyses

Multilevel models

Initial analyses

With weights

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ mut + (1 | agency) + (1 | year)
##    Data: full_data_means
## Weights: weight
## 
## REML criterion at convergence: 14724487
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -43.56  -0.45   0.02   0.52  43.90 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  agency   (Intercept) 0.007685 0.0877  
##  year     (Intercept) 0.000598 0.0245  
##  Residual             1.825365 1.3511  
## Number of obs: 5919194, groups:  agency, 81; year, 13
## 
## Fixed effects:
##                   Estimate     Std. Error             df t value            Pr(>|t|)    
## (Intercept)       1.380508       0.012947      71.529301     107 <0.0000000000000002 ***
## mut               0.666167       0.000269 5917287.303678    2481 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##     (Intr)
## mut -0.068

Without weights

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ mut + (1 | agency) + (1 | year)
##    Data: full_data_means
## 
## REML criterion at convergence: 13786035
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -5.556 -0.572  0.009  0.575  4.501 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  agency   (Intercept) 0.009977 0.0999  
##  year     (Intercept) 0.000468 0.0216  
##  Residual             0.483270 0.6952  
## Number of obs: 6531290, groups:  agency, 81; year, 14
## 
## Fixed effects:
##                   Estimate     Std. Error             df t value            Pr(>|t|)    
## (Intercept)       1.377342       0.013125      83.349772     105 <0.0000000000000002 ***
## mut               0.668849       0.000254 6525742.363739    2629 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##     (Intr)
## mut -0.065

With controls

With weights

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ mut + sex + ethnicity + tenure_fed + supervisor + leaving +      (1 | agency) + (1 | year)
##    Data: full_data_means
## Weights: weight
## 
## REML criterion at convergence: 12779349
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -42.71  -0.47   0.06   0.51  44.29 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  agency   (Intercept) 0.00704  0.0839  
##  year     (Intercept) 0.00113  0.0336  
##  Residual             1.68748  1.2990  
## Number of obs: 5287598, groups:  agency, 48; year, 12
## 
## Fixed effects:
##                   Estimate     Std. Error             df t value             Pr(>|t|)    
## (Intercept)       1.520200       0.018545      29.106058   81.97 < 0.0000000000000002 ***
## mut               0.629867       0.000293 5287175.319339 2146.17 < 0.0000000000000002 ***
## sexA              0.062534       0.002812 5287572.685071   22.24 < 0.0000000000000002 ***
## sexB              0.059525       0.002820 5287574.402828   21.11 < 0.0000000000000002 ***
## ethnicity1        0.091109       0.019592      10.368777    4.65              0.00082 ***
## ethnicity2        0.102719       0.019588      10.359603    5.24              0.00034 ***
## ethnicityA        0.055649       0.002815 5287144.568650   19.77 < 0.0000000000000002 ***
## ethnicityB        0.080570       0.002673 5287567.683738   30.15 < 0.0000000000000002 ***
## tenure_fedA       0.009839       0.003137 5285300.746029    3.14              0.00171 ** 
## tenure_fedB      -0.052203       0.003123 5286749.413308  -16.72 < 0.0000000000000002 ***
## tenure_fedC      -0.072261       0.003143 5286578.919028  -22.99 < 0.0000000000000002 ***
## tenure_fedD      -0.087635       0.003683 5145227.064350  -23.79 < 0.0000000000000002 ***
## tenure_fedE      -0.114120       0.004069 5188862.561270  -28.04 < 0.0000000000000002 ***
## tenure_fedF      -0.132387       0.003971 5176026.497560  -33.34 < 0.0000000000000002 ***
## tenure_fedG      -0.145774       0.003523 5101320.499105  -41.38 < 0.0000000000000002 ***
## supervisorA      -0.112752       0.003011 5287285.609074  -37.45 < 0.0000000000000002 ***
## supervisorB       0.012422       0.003083 5287329.480108    4.03             0.000056 ***
## supervisorC       0.073001       0.004207 5287175.438162   17.35 < 0.0000000000000002 ***
## leavingA          0.066117       0.002174 5280552.310546   30.41 < 0.0000000000000002 ***
## leavingB         -0.178988       0.002273 5281208.650322  -78.75 < 0.0000000000000002 ***
## leavingC         -0.217301       0.002355 5282280.194754  -92.25 < 0.0000000000000002 ***
## leavingD         -0.195472       0.002397 5281846.423015  -81.55 < 0.0000000000000002 ***
## leavingE         -0.230516       0.004375 5284238.675256  -52.69 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Without weights

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ mut + sex + ethnicity + tenure_fed + supervisor + leaving +      (1 | agency) + (1 | year)
##    Data: full_data_means
## 
## REML criterion at convergence: 12148710
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -5.852 -0.600  0.068  0.634  4.750 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  agency   (Intercept) 0.007519 0.0867  
##  year     (Intercept) 0.000926 0.0304  
##  Residual             0.458971 0.6775  
## Number of obs: 5899694, groups:  agency, 48; year, 13
## 
## Fixed effects:
##                   Estimate     Std. Error             df t value             Pr(>|t|)    
## (Intercept)       1.529325       0.017158      40.289125   89.13 < 0.0000000000000002 ***
## mut               0.628183       0.000277 5899090.140446 2264.01 < 0.0000000000000002 ***
## sexA              0.082238       0.002331 5899665.489562   35.27 < 0.0000000000000002 ***
## sexB              0.076458       0.002333 5899670.223240   32.77 < 0.0000000000000002 ***
## ethnicity1        0.071006       0.017099      11.390145    4.15              0.00150 ** 
## ethnicity2        0.092765       0.017091      11.368851    5.43              0.00019 ***
## ethnicityA        0.050539       0.002343 5899098.287757   21.57 < 0.0000000000000002 ***
## ethnicityB        0.077506       0.002198 5899664.055899   35.26 < 0.0000000000000002 ***
## tenure_fedA       0.016028       0.002799 5893223.592616    5.73           0.00000001 ***
## tenure_fedB      -0.050892       0.002790 5896837.883796  -18.24 < 0.0000000000000002 ***
## tenure_fedC      -0.072203       0.002805 5895926.148511  -25.74 < 0.0000000000000002 ***
## tenure_fedD      -0.090710       0.004113 3031608.235408  -22.05 < 0.0000000000000002 ***
## tenure_fedE      -0.126851       0.004602 3681722.647702  -27.57 < 0.0000000000000002 ***
## tenure_fedF      -0.152017       0.004362 3357853.234664  -34.85 < 0.0000000000000002 ***
## tenure_fedG      -0.147942       0.003702 2382577.610029  -39.97 < 0.0000000000000002 ***
## supervisorA      -0.131069       0.002658 5898987.397971  -49.31 < 0.0000000000000002 ***
## supervisorB       0.002493       0.002722 5899325.346892    0.92              0.35961    
## supervisorC       0.076089       0.004132 5893980.828565   18.41 < 0.0000000000000002 ***
## leavingA          0.078987       0.001942 5893919.934822   40.66 < 0.0000000000000002 ***
## leavingB         -0.175154       0.002046 5894340.079018  -85.61 < 0.0000000000000002 ***
## leavingC         -0.217759       0.002127 5895517.304880 -102.39 < 0.0000000000000002 ***
## leavingD         -0.173069       0.002170 5894410.452706  -79.75 < 0.0000000000000002 ***
## leavingE         -0.277810       0.005702 5881374.036949  -48.72 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1