Data Visualization

mortality = read.csv("Mortality.csv")
str(mortality)
## 'data.frame':    299 obs. of  13 variables:
##  $ age                     : num  75 55 65 50 65 90 75 60 65 80 ...
##  $ anaemia                 : int  0 0 0 1 1 1 1 1 0 1 ...
##  $ creatinine_phosphokinase: int  582 7861 146 111 160 47 246 315 157 123 ...
##  $ diabetes                : int  0 0 0 0 1 0 0 1 0 0 ...
##  $ ejection_fraction       : int  20 38 20 20 20 40 15 60 65 35 ...
##  $ high_blood_pressure     : int  1 0 0 0 0 1 0 0 0 1 ...
##  $ platelets               : num  265000 263358 162000 210000 327000 ...
##  $ serum_creatinine        : num  1.9 1.1 1.3 1.9 2.7 2.1 1.2 1.1 1.5 9.4 ...
##  $ serum_sodium            : int  130 136 129 137 116 132 137 131 138 133 ...
##  $ sex                     : int  1 1 1 1 0 1 1 1 0 1 ...
##  $ smoking                 : int  0 0 1 0 0 1 0 1 0 1 ...
##  $ time                    : int  4 6 7 7 8 8 10 10 10 10 ...
##  $ DEATH_EVENT             : int  1 1 1 1 1 1 1 1 1 1 ...
#death = seq(1, 299)
#death
mortality$DEATH = NA
head(mortality)
##   age anaemia creatinine_phosphokinase diabetes ejection_fraction
## 1  75       0                      582        0                20
## 2  55       0                     7861        0                38
## 3  65       0                      146        0                20
## 4  50       1                      111        0                20
## 5  65       1                      160        1                20
## 6  90       1                       47        0                40
##   high_blood_pressure platelets serum_creatinine serum_sodium sex smoking time
## 1                   1    265000              1.9          130   1       0    4
## 2                   0    263358              1.1          136   1       0    6
## 3                   0    162000              1.3          129   1       1    7
## 4                   0    210000              1.9          137   1       0    7
## 5                   0    327000              2.7          116   0       0    8
## 6                   1    204000              2.1          132   1       1    8
##   DEATH_EVENT DEATH
## 1           1    NA
## 2           1    NA
## 3           1    NA
## 4           1    NA
## 5           1    NA
## 6           1    NA
mortality$DEATH[mortality$DEATH_EVENT == 0] = 'no'
mortality$DEATH[mortality$DEATH_EVENT == 1] = 'yes'
mortality
##        age anaemia creatinine_phosphokinase diabetes ejection_fraction
## 1   75.000       0                      582        0                20
## 2   55.000       0                     7861        0                38
## 3   65.000       0                      146        0                20
## 4   50.000       1                      111        0                20
## 5   65.000       1                      160        1                20
## 6   90.000       1                       47        0                40
## 7   75.000       1                      246        0                15
## 8   60.000       1                      315        1                60
## 9   65.000       0                      157        0                65
## 10  80.000       1                      123        0                35
## 11  75.000       1                       81        0                38
## 12  62.000       0                      231        0                25
## 13  45.000       1                      981        0                30
## 14  50.000       1                      168        0                38
## 15  49.000       1                       80        0                30
## 16  82.000       1                      379        0                50
## 17  87.000       1                      149        0                38
## 18  45.000       0                      582        0                14
## 19  70.000       1                      125        0                25
## 20  48.000       1                      582        1                55
## 21  65.000       1                       52        0                25
## 22  65.000       1                      128        1                30
## 23  68.000       1                      220        0                35
## 24  53.000       0                       63        1                60
## 25  75.000       0                      582        1                30
## 26  80.000       0                      148        1                38
## 27  95.000       1                      112        0                40
## 28  70.000       0                      122        1                45
## 29  58.000       1                       60        0                38
## 30  82.000       0                       70        1                30
## 31  94.000       0                      582        1                38
## 32  85.000       0                       23        0                45
## 33  50.000       1                      249        1                35
## 34  50.000       1                      159        1                30
## 35  65.000       0                       94        1                50
## 36  69.000       0                      582        1                35
## 37  90.000       1                       60        1                50
## 38  82.000       1                      855        1                50
## 39  60.000       0                     2656        1                30
## 40  60.000       0                      235        1                38
## 41  70.000       0                      582        0                20
## 42  50.000       0                      124        1                30
## 43  70.000       0                      571        1                45
## 44  72.000       0                      127        1                50
## 45  60.000       1                      588        1                60
## 46  50.000       0                      582        1                38
## 47  51.000       0                     1380        0                25
## 48  60.000       0                      582        1                38
## 49  80.000       1                      553        0                20
## 50  57.000       1                      129        0                30
## 51  68.000       1                      577        0                25
## 52  53.000       1                       91        0                20
## 53  60.000       0                     3964        1                62
## 54  70.000       1                       69        1                50
## 55  60.000       1                      260        1                38
## 56  95.000       1                      371        0                30
## 57  70.000       1                       75        0                35
## 58  60.000       1                      607        0                40
## 59  49.000       0                      789        0                20
## 60  72.000       0                      364        1                20
## 61  45.000       0                     7702        1                25
## 62  50.000       0                      318        0                40
## 63  55.000       0                      109        0                35
## 64  45.000       0                      582        0                35
## 65  45.000       0                      582        0                80
## 66  60.000       0                       68        0                20
## 67  42.000       1                      250        1                15
## 68  72.000       1                      110        0                25
## 69  70.000       0                      161        0                25
## 70  65.000       0                      113        1                25
## 71  41.000       0                      148        0                40
## 72  58.000       0                      582        1                35
## 73  85.000       0                     5882        0                35
## 74  65.000       0                      224        1                50
## 75  69.000       0                      582        0                20
## 76  60.000       1                       47        0                20
## 77  70.000       0                       92        0                60
## 78  42.000       0                      102        1                40
## 79  75.000       1                      203        1                38
## 80  55.000       0                      336        0                45
## 81  70.000       0                       69        0                40
## 82  67.000       0                      582        0                50
## 83  60.000       1                       76        1                25
## 84  79.000       1                       55        0                50
## 85  59.000       1                      280        1                25
## 86  51.000       0                       78        0                50
## 87  55.000       0                       47        0                35
## 88  65.000       1                       68        1                60
## 89  44.000       0                       84        1                40
## 90  57.000       1                      115        0                25
## 91  70.000       0                       66        1                45
## 92  60.000       0                      897        1                45
## 93  42.000       0                      582        0                60
## 94  60.000       1                      154        0                25
## 95  58.000       0                      144        1                38
## 96  58.000       1                      133        0                60
## 97  63.000       1                      514        1                25
## 98  70.000       1                       59        0                60
## 99  60.000       1                      156        1                25
## 100 63.000       1                       61        1                40
## 101 65.000       1                      305        0                25
## 102 75.000       0                      582        0                45
## 103 80.000       0                      898        0                25
## 104 42.000       0                     5209        0                30
## 105 60.000       0                       53        0                50
## 106 72.000       1                      328        0                30
## 107 55.000       0                      748        0                45
## 108 45.000       1                     1876        1                35
## 109 63.000       0                      936        0                38
## 110 45.000       0                      292        1                35
## 111 85.000       0                      129        0                60
## 112 55.000       0                       60        0                35
## 113 50.000       0                      369        1                25
## 114 70.000       1                      143        0                60
## 115 60.000       1                      754        1                40
## 116 58.000       1                      400        0                40
## 117 60.000       1                       96        1                60
## 118 85.000       1                      102        0                60
## 119 65.000       1                      113        1                60
## 120 86.000       0                      582        0                38
## 121 60.000       1                      737        0                60
## 122 66.000       1                       68        1                38
## 123 60.000       0                       96        1                38
## 124 60.000       1                      582        0                30
## 125 60.000       0                      582        0                40
## 126 43.000       1                      358        0                50
## 127 46.000       0                      168        1                17
## 128 58.000       1                      200        1                60
## 129 61.000       0                      248        0                30
## 130 53.000       1                      270        1                35
## 131 53.000       1                     1808        0                60
## 132 60.000       1                     1082        1                45
## 133 46.000       0                      719        0                40
## 134 63.000       0                      193        0                60
## 135 81.000       0                     4540        0                35
## 136 75.000       0                      582        0                40
## 137 65.000       1                       59        1                60
## 138 68.000       1                      646        0                25
## 139 62.000       0                      281        1                35
## 140 50.000       0                     1548        0                30
## 141 80.000       0                      805        0                38
## 142 46.000       1                      291        0                35
## 143 50.000       0                      482        1                30
## 144 61.000       1                       84        0                40
## 145 72.000       1                      943        0                25
## 146 50.000       0                      185        0                30
## 147 52.000       0                      132        0                30
## 148 64.000       0                     1610        0                60
## 149 75.000       1                      582        0                30
## 150 60.000       0                     2261        0                35
## 151 72.000       0                      233        0                45
## 152 62.000       0                       30        1                60
## 153 50.000       0                      115        0                45
## 154 50.000       0                     1846        1                35
## 155 65.000       1                      335        0                35
## 156 60.000       1                      231        1                25
## 157 52.000       1                       58        0                35
## 158 50.000       0                      250        0                25
## 159 85.000       1                      910        0                50
## 160 59.000       1                      129        0                45
## 161 66.000       1                       72        0                40
## 162 45.000       1                      130        0                35
## 163 63.000       1                      582        0                40
## 164 50.000       1                     2334        1                35
## 165 45.000       0                     2442        1                30
## 166 80.000       0                      776        1                38
## 167 53.000       0                      196        0                60
## 168 59.000       0                       66        1                20
## 169 65.000       0                      582        1                40
## 170 70.000       0                      835        0                35
## 171 51.000       1                      582        1                35
## 172 52.000       0                     3966        0                40
## 173 70.000       1                      171        0                60
## 174 50.000       1                      115        0                20
## 175 65.000       0                      198        1                35
## 176 60.000       1                       95        0                60
## 177 69.000       0                     1419        0                40
## 178 49.000       1                       69        0                50
## 179 63.000       1                      122        1                60
## 180 55.000       0                      835        0                40
## 181 40.000       0                      478        1                30
## 182 59.000       1                      176        1                25
## 183 65.000       0                      395        1                25
## 184 75.000       0                       99        0                38
## 185 58.000       1                      145        0                25
## 186 60.667       1                      104        1                30
## 187 50.000       0                      582        0                50
## 188 60.000       0                     1896        1                25
## 189 60.667       1                      151        1                40
## 190 40.000       0                      244        0                45
## 191 80.000       0                      582        1                35
## 192 64.000       1                       62        0                60
## 193 50.000       1                      121        1                40
## 194 73.000       1                      231        1                30
## 195 45.000       0                      582        0                20
## 196 77.000       1                      418        0                45
## 197 45.000       0                      582        1                38
## 198 65.000       0                      167        0                30
## 199 50.000       1                      582        1                20
## 200 60.000       0                     1211        1                35
## 201 63.000       1                     1767        0                45
## 202 45.000       0                      308        1                60
## 203 70.000       0                       97        0                60
## 204 60.000       0                       59        0                25
## 205 78.000       1                       64        0                40
## 206 50.000       1                      167        1                45
## 207 40.000       1                      101        0                40
## 208 85.000       0                      212        0                38
## 209 60.000       1                     2281        1                40
## 210 49.000       0                      972        1                35
## 211 70.000       0                      212        1                17
## 212 50.000       0                      582        0                62
## 213 78.000       0                      224        0                50
## 214 48.000       1                      131        1                30
## 215 65.000       1                      135        0                35
## 216 73.000       0                      582        0                35
## 217 70.000       0                     1202        0                50
## 218 54.000       1                      427        0                70
## 219 68.000       1                     1021        1                35
## 220 55.000       0                      582        1                35
## 221 73.000       0                      582        0                20
## 222 65.000       0                      118        0                50
## 223 42.000       1                       86        0                35
## 224 47.000       0                      582        0                25
## 225 58.000       0                      582        1                25
## 226 75.000       0                      675        1                60
## 227 58.000       1                       57        0                25
## 228 55.000       1                     2794        0                35
## 229 65.000       0                       56        0                25
## 230 72.000       0                      211        0                25
## 231 60.000       0                      166        0                30
## 232 70.000       0                       93        0                35
## 233 40.000       1                      129        0                35
## 234 53.000       1                      707        0                38
## 235 53.000       1                      582        0                45
## 236 77.000       1                      109        0                50
## 237 75.000       0                      119        0                50
## 238 70.000       0                      232        0                30
## 239 65.000       1                      720        1                40
## 240 55.000       1                      180        0                45
## 241 70.000       0                       81        1                35
## 242 65.000       0                      582        1                30
## 243 40.000       0                       90        0                35
## 244 73.000       1                     1185        0                40
## 245 54.000       0                      582        1                38
## 246 61.000       1                       80        1                38
## 247 55.000       0                     2017        0                25
## 248 64.000       0                      143        0                25
## 249 40.000       0                      624        0                35
## 250 53.000       0                      207        1                40
## 251 50.000       0                     2522        0                30
## 252 55.000       0                      572        1                35
## 253 50.000       0                      245        0                45
## 254 70.000       0                       88        1                35
## 255 53.000       1                      446        0                60
## 256 52.000       1                      191        1                30
## 257 65.000       0                      326        0                38
## 258 58.000       0                      132        1                38
## 259 45.000       1                       66        1                25
## 260 53.000       0                       56        0                50
## 261 55.000       0                       66        0                40
## 262 62.000       1                      655        0                40
## 263 65.000       1                      258        1                25
## 264 68.000       1                      157        1                60
## 265 61.000       0                      582        1                38
## 266 50.000       1                      298        0                35
## 267 55.000       0                     1199        0                20
## 268 56.000       1                      135        1                38
## 269 45.000       0                      582        1                38
## 270 40.000       0                      582        1                35
## 271 44.000       0                      582        1                30
## 272 51.000       0                      582        1                40
## 273 67.000       0                      213        0                38
## 274 42.000       0                       64        0                40
## 275 60.000       1                      257        1                30
## 276 45.000       0                      582        0                38
## 277 70.000       0                      618        0                35
## 278 70.000       0                      582        1                38
## 279 50.000       1                     1051        1                30
## 280 55.000       0                       84        1                38
## 281 70.000       0                     2695        1                40
## 282 70.000       0                      582        0                40
## 283 42.000       0                       64        0                30
## 284 65.000       0                     1688        0                38
## 285 50.000       1                       54        0                40
## 286 55.000       1                      170        1                40
## 287 60.000       0                      253        0                35
## 288 45.000       0                      582        1                55
## 289 65.000       0                      892        1                35
## 290 90.000       1                      337        0                38
## 291 45.000       0                      615        1                55
## 292 60.000       0                      320        0                35
## 293 52.000       0                      190        1                38
## 294 63.000       1                      103        1                35
## 295 62.000       0                       61        1                38
## 296 55.000       0                     1820        0                38
## 297 45.000       0                     2060        1                60
## 298 45.000       0                     2413        0                38
## 299 50.000       0                      196        0                45
##     high_blood_pressure platelets serum_creatinine serum_sodium sex smoking
## 1                     1    265000             1.90          130   1       0
## 2                     0    263358             1.10          136   1       0
## 3                     0    162000             1.30          129   1       1
## 4                     0    210000             1.90          137   1       0
## 5                     0    327000             2.70          116   0       0
## 6                     1    204000             2.10          132   1       1
## 7                     0    127000             1.20          137   1       0
## 8                     0    454000             1.10          131   1       1
## 9                     0    263358             1.50          138   0       0
## 10                    1    388000             9.40          133   1       1
## 11                    1    368000             4.00          131   1       1
## 12                    1    253000             0.90          140   1       1
## 13                    0    136000             1.10          137   1       0
## 14                    1    276000             1.10          137   1       0
## 15                    1    427000             1.00          138   0       0
## 16                    0     47000             1.30          136   1       0
## 17                    0    262000             0.90          140   1       0
## 18                    0    166000             0.80          127   1       0
## 19                    1    237000             1.00          140   0       0
## 20                    0     87000             1.90          121   0       0
## 21                    1    276000             1.30          137   0       0
## 22                    1    297000             1.60          136   0       0
## 23                    1    289000             0.90          140   1       1
## 24                    0    368000             0.80          135   1       0
## 25                    1    263358             1.83          134   0       0
## 26                    0    149000             1.90          144   1       1
## 27                    1    196000             1.00          138   0       0
## 28                    1    284000             1.30          136   1       1
## 29                    0    153000             5.80          134   1       0
## 30                    0    200000             1.20          132   1       1
## 31                    1    263358             1.83          134   1       0
## 32                    0    360000             3.00          132   1       0
## 33                    1    319000             1.00          128   0       0
## 34                    0    302000             1.20          138   0       0
## 35                    1    188000             1.00          140   1       0
## 36                    0    228000             3.50          134   1       0
## 37                    0    226000             1.00          134   1       0
## 38                    1    321000             1.00          145   0       0
## 39                    0    305000             2.30          137   1       0
## 40                    0    329000             3.00          142   0       0
## 41                    1    263358             1.83          134   1       1
## 42                    1    153000             1.20          136   0       1
## 43                    1    185000             1.20          139   1       1
## 44                    1    218000             1.00          134   1       0
## 45                    0    194000             1.10          142   0       0
## 46                    0    310000             1.90          135   1       1
## 47                    1    271000             0.90          130   1       0
## 48                    1    451000             0.60          138   1       1
## 49                    1    140000             4.40          133   1       0
## 50                    0    395000             1.00          140   0       0
## 51                    1    166000             1.00          138   1       0
## 52                    1    418000             1.40          139   0       0
## 53                    0    263358             6.80          146   0       0
## 54                    1    351000             1.00          134   0       0
## 55                    0    255000             2.20          132   0       1
## 56                    0    461000             2.00          132   1       0
## 57                    0    223000             2.70          138   1       1
## 58                    0    216000             0.60          138   1       1
## 59                    1    319000             1.10          136   1       1
## 60                    1    254000             1.30          136   1       1
## 61                    1    390000             1.00          139   1       0
## 62                    1    216000             2.30          131   0       0
## 63                    0    254000             1.10          139   1       1
## 64                    0    385000             1.00          145   1       0
## 65                    0    263358             1.18          137   0       0
## 66                    0    119000             2.90          127   1       1
## 67                    0    213000             1.30          136   0       0
## 68                    0    274000             1.00          140   1       1
## 69                    0    244000             1.20          142   0       0
## 70                    0    497000             1.83          135   1       0
## 71                    0    374000             0.80          140   1       1
## 72                    0    122000             0.90          139   1       1
## 73                    0    243000             1.00          132   1       1
## 74                    0    149000             1.30          137   1       1
## 75                    0    266000             1.20          134   1       1
## 76                    0    204000             0.70          139   1       1
## 77                    1    317000             0.80          140   0       1
## 78                    0    237000             1.20          140   1       0
## 79                    1    283000             0.60          131   1       1
## 80                    1    324000             0.90          140   0       0
## 81                    0    293000             1.70          136   0       0
## 82                    0    263358             1.18          137   1       1
## 83                    0    196000             2.50          132   0       0
## 84                    1    172000             1.80          133   1       0
## 85                    1    302000             1.00          141   0       0
## 86                    0    406000             0.70          140   1       0
## 87                    1    173000             1.10          137   1       0
## 88                    1    304000             0.80          140   1       0
## 89                    1    235000             0.70          139   1       0
## 90                    1    181000             1.10          144   1       0
## 91                    0    249000             0.80          136   1       1
## 92                    0    297000             1.00          133   1       0
## 93                    0    263358             1.18          137   0       0
## 94                    0    210000             1.70          135   1       0
## 95                    1    327000             0.70          142   0       0
## 96                    1    219000             1.00          141   1       0
## 97                    1    254000             1.30          134   1       0
## 98                    0    255000             1.10          136   0       0
## 99                    1    318000             1.20          137   0       0
## 100                   0    221000             1.10          140   0       0
## 101                   0    298000             1.10          141   1       0
## 102                   1    263358             1.18          137   1       0
## 103                   0    149000             1.10          144   1       1
## 104                   0    226000             1.00          140   1       1
## 105                   1    286000             2.30          143   0       0
## 106                   1    621000             1.70          138   0       1
## 107                   0    263000             1.30          137   1       0
## 108                   0    226000             0.90          138   1       0
## 109                   0    304000             1.10          133   1       1
## 110                   0    850000             1.30          142   1       1
## 111                   0    306000             1.20          132   1       1
## 112                   0    228000             1.20          135   1       1
## 113                   0    252000             1.60          136   1       0
## 114                   0    351000             1.30          137   0       0
## 115                   1    328000             1.20          126   1       0
## 116                   0    164000             1.00          139   0       0
## 117                   1    271000             0.70          136   0       0
## 118                   0    507000             3.20          138   0       0
## 119                   1    203000             0.90          140   0       0
## 120                   0    263358             1.83          134   0       0
## 121                   1    210000             1.50          135   1       1
## 122                   1    162000             1.00          136   0       0
## 123                   0    228000             0.75          140   0       0
## 124                   1    127000             0.90          145   0       0
## 125                   0    217000             3.70          134   1       0
## 126                   0    237000             1.30          135   0       0
## 127                   1    271000             2.10          124   0       0
## 128                   0    300000             0.80          137   0       0
## 129                   1    267000             0.70          136   1       1
## 130                   0    227000             3.40          145   1       0
## 131                   1    249000             0.70          138   1       1
## 132                   0    250000             6.10          131   1       0
## 133                   1    263358             1.18          137   0       0
## 134                   1    295000             1.30          145   1       1
## 135                   0    231000             1.18          137   1       1
## 136                   0    263358             1.18          137   1       0
## 137                   0    172000             0.90          137   0       0
## 138                   0    305000             2.10          130   1       0
## 139                   0    221000             1.00          136   0       0
## 140                   1    211000             0.80          138   1       0
## 141                   0    263358             1.10          134   1       0
## 142                   0    348000             0.90          140   0       0
## 143                   0    329000             0.90          132   0       0
## 144                   1    229000             0.90          141   0       0
## 145                   1    338000             1.70          139   1       1
## 146                   0    266000             0.70          141   1       1
## 147                   0    218000             0.70          136   1       1
## 148                   0    242000             1.00          137   1       0
## 149                   0    225000             1.83          134   1       0
## 150                   1    228000             0.90          136   1       0
## 151                   1    235000             2.50          135   0       0
## 152                   1    244000             0.90          139   1       0
## 153                   1    184000             0.90          134   1       1
## 154                   0    263358             1.18          137   1       1
## 155                   1    235000             0.80          136   0       0
## 156                   0    194000             1.70          140   1       0
## 157                   0    277000             1.40          136   0       0
## 158                   0    262000             1.00          136   1       1
## 159                   0    235000             1.30          134   1       0
## 160                   1    362000             1.10          139   1       1
## 161                   1    242000             1.20          134   1       0
## 162                   0    174000             0.80          139   1       1
## 163                   0    448000             0.90          137   1       1
## 164                   0     75000             0.90          142   0       0
## 165                   0    334000             1.10          139   1       0
## 166                   1    192000             1.30          135   0       0
## 167                   0    220000             0.70          133   1       1
## 168                   0     70000             2.40          134   1       0
## 169                   0    270000             1.00          138   0       0
## 170                   1    305000             0.80          133   0       0
## 171                   0    263358             1.50          136   1       1
## 172                   0    325000             0.90          140   1       1
## 173                   1    176000             1.10          145   1       1
## 174                   0    189000             0.80          139   1       0
## 175                   1    281000             0.90          137   1       1
## 176                   0    337000             1.00          138   1       1
## 177                   0    105000             1.00          135   1       1
## 178                   0    132000             1.00          140   0       0
## 179                   0    267000             1.20          145   1       0
## 180                   0    279000             0.70          140   1       1
## 181                   0    303000             0.90          136   1       0
## 182                   0    221000             1.00          136   1       1
## 183                   0    265000             1.20          136   1       1
## 184                   1    224000             2.50          134   1       0
## 185                   0    219000             1.20          137   1       1
## 186                   0    389000             1.50          136   1       0
## 187                   0    153000             0.60          134   0       0
## 188                   0    365000             2.10          144   0       0
## 189                   1    201000             1.00          136   0       0
## 190                   1    275000             0.90          140   0       0
## 191                   0    350000             2.10          134   1       0
## 192                   0    309000             1.50          135   0       0
## 193                   0    260000             0.70          130   1       0
## 194                   0    160000             1.18          142   1       1
## 195                   1    126000             1.60          135   1       0
## 196                   0    223000             1.80          145   1       0
## 197                   1    263358             1.18          137   0       0
## 198                   0    259000             0.80          138   0       0
## 199                   1    279000             1.00          134   0       0
## 200                   0    263358             1.80          113   1       1
## 201                   0     73000             0.70          137   1       0
## 202                   1    377000             1.00          136   1       0
## 203                   1    220000             0.90          138   1       0
## 204                   1    212000             3.50          136   1       1
## 205                   0    277000             0.70          137   1       1
## 206                   0    362000             1.00          136   0       0
## 207                   0    226000             0.80          141   0       0
## 208                   0    186000             0.90          136   1       0
## 209                   0    283000             1.00          141   0       0
## 210                   1    268000             0.80          130   0       0
## 211                   1    389000             1.00          136   1       1
## 212                   1    147000             0.80          140   1       1
## 213                   0    481000             1.40          138   1       1
## 214                   1    244000             1.60          130   0       0
## 215                   1    290000             0.80          134   1       0
## 216                   1    203000             1.30          134   1       0
## 217                   1    358000             0.90          141   0       0
## 218                   1    151000             9.00          137   0       0
## 219                   0    271000             1.10          134   1       0
## 220                   1    371000             0.70          140   0       0
## 221                   0    263358             1.83          134   1       0
## 222                   0    194000             1.10          145   1       1
## 223                   0    365000             1.10          139   1       1
## 224                   0    130000             0.80          134   1       0
## 225                   0    504000             1.00          138   1       0
## 226                   0    265000             1.40          125   0       0
## 227                   0    189000             1.30          132   1       1
## 228                   1    141000             1.00          140   1       0
## 229                   0    237000             5.00          130   0       0
## 230                   0    274000             1.20          134   0       0
## 231                   0     62000             1.70          127   0       0
## 232                   0    185000             1.10          134   1       1
## 233                   0    255000             0.90          137   1       0
## 234                   0    330000             1.40          137   1       1
## 235                   0    305000             1.10          137   1       1
## 236                   1    406000             1.10          137   1       0
## 237                   1    248000             1.10          148   1       0
## 238                   0    173000             1.20          132   1       0
## 239                   0    257000             1.00          136   0       0
## 240                   0    263358             1.18          137   1       1
## 241                   1    533000             1.30          139   0       0
## 242                   0    249000             1.30          136   1       1
## 243                   0    255000             1.10          136   1       1
## 244                   1    220000             0.90          141   0       0
## 245                   0    264000             1.80          134   1       0
## 246                   0    282000             1.40          137   1       0
## 247                   0    314000             1.10          138   1       0
## 248                   0    246000             2.40          135   1       0
## 249                   0    301000             1.00          142   1       1
## 250                   0    223000             1.20          130   0       0
## 251                   1    404000             0.50          139   0       0
## 252                   0    231000             0.80          143   0       0
## 253                   1    274000             1.00          133   1       0
## 254                   1    236000             1.20          132   0       0
## 255                   1    263358             1.00          139   1       0
## 256                   1    334000             1.00          142   1       1
## 257                   0    294000             1.70          139   0       0
## 258                   1    253000             1.00          139   1       0
## 259                   0    233000             0.80          135   1       0
## 260                   0    308000             0.70          135   1       1
## 261                   0    203000             1.00          138   1       0
## 262                   0    283000             0.70          133   0       0
## 263                   0    198000             1.40          129   1       0
## 264                   0    208000             1.00          140   0       0
## 265                   0    147000             1.20          141   1       0
## 266                   0    362000             0.90          140   1       1
## 267                   0    263358             1.83          134   1       1
## 268                   0    133000             1.70          140   1       0
## 269                   0    302000             0.90          140   0       0
## 270                   0    222000             1.00          132   1       0
## 271                   1    263358             1.60          130   1       1
## 272                   0    221000             0.90          134   0       0
## 273                   0    215000             1.20          133   0       0
## 274                   0    189000             0.70          140   1       0
## 275                   0    150000             1.00          137   1       1
## 276                   1    422000             0.80          137   0       0
## 277                   0    327000             1.10          142   0       0
## 278                   0     25100             1.10          140   1       0
## 279                   0    232000             0.70          136   0       0
## 280                   0    451000             1.30          136   0       0
## 281                   0    241000             1.00          137   1       0
## 282                   0     51000             2.70          136   1       1
## 283                   0    215000             3.80          128   1       1
## 284                   0    263358             1.10          138   1       1
## 285                   0    279000             0.80          141   1       0
## 286                   0    336000             1.20          135   1       0
## 287                   0    279000             1.70          140   1       0
## 288                   0    543000             1.00          132   0       0
## 289                   0    263358             1.10          142   0       0
## 290                   0    390000             0.90          144   0       0
## 291                   0    222000             0.80          141   0       0
## 292                   0    133000             1.40          139   1       0
## 293                   0    382000             1.00          140   1       1
## 294                   0    179000             0.90          136   1       1
## 295                   1    155000             1.10          143   1       1
## 296                   0    270000             1.20          139   0       0
## 297                   0    742000             0.80          138   0       0
## 298                   0    140000             1.40          140   1       1
## 299                   0    395000             1.60          136   1       1
##     time DEATH_EVENT DEATH
## 1      4           1   yes
## 2      6           1   yes
## 3      7           1   yes
## 4      7           1   yes
## 5      8           1   yes
## 6      8           1   yes
## 7     10           1   yes
## 8     10           1   yes
## 9     10           1   yes
## 10    10           1   yes
## 11    10           1   yes
## 12    10           1   yes
## 13    11           1   yes
## 14    11           1   yes
## 15    12           0    no
## 16    13           1   yes
## 17    14           1   yes
## 18    14           1   yes
## 19    15           1   yes
## 20    15           1   yes
## 21    16           0    no
## 22    20           1   yes
## 23    20           1   yes
## 24    22           0    no
## 25    23           1   yes
## 26    23           1   yes
## 27    24           1   yes
## 28    26           1   yes
## 29    26           1   yes
## 30    26           1   yes
## 31    27           1   yes
## 32    28           1   yes
## 33    28           1   yes
## 34    29           0    no
## 35    29           1   yes
## 36    30           1   yes
## 37    30           1   yes
## 38    30           1   yes
## 39    30           0    no
## 40    30           1   yes
## 41    31           1   yes
## 42    32           1   yes
## 43    33           1   yes
## 44    33           0    no
## 45    33           1   yes
## 46    35           1   yes
## 47    38           1   yes
## 48    40           1   yes
## 49    41           1   yes
## 50    42           1   yes
## 51    43           1   yes
## 52    43           1   yes
## 53    43           1   yes
## 54    44           1   yes
## 55    45           1   yes
## 56    50           1   yes
## 57    54           0    no
## 58    54           0    no
## 59    55           1   yes
## 60    59           1   yes
## 61    60           1   yes
## 62    60           1   yes
## 63    60           0    no
## 64    61           1   yes
## 65    63           0    no
## 66    64           1   yes
## 67    65           1   yes
## 68    65           1   yes
## 69    66           1   yes
## 70    67           1   yes
## 71    68           0    no
## 72    71           0    no
## 73    72           1   yes
## 74    72           0    no
## 75    73           1   yes
## 76    73           1   yes
## 77    74           0    no
## 78    74           0    no
## 79    74           0    no
## 80    74           0    no
## 81    75           0    no
## 82    76           0    no
## 83    77           1   yes
## 84    78           0    no
## 85    78           1   yes
## 86    79           0    no
## 87    79           0    no
## 88    79           0    no
## 89    79           0    no
## 90    79           0    no
## 91    80           0    no
## 92    80           0    no
## 93    82           0    no
## 94    82           1   yes
## 95    83           0    no
## 96    83           0    no
## 97    83           0    no
## 98    85           0    no
## 99    85           0    no
## 100   86           0    no
## 101   87           0    no
## 102   87           0    no
## 103   87           0    no
## 104   87           0    no
## 105   87           0    no
## 106   88           1   yes
## 107   88           0    no
## 108   88           0    no
## 109   88           0    no
## 110   88           0    no
## 111   90           1   yes
## 112   90           0    no
## 113   90           0    no
## 114   90           1   yes
## 115   91           0    no
## 116   91           0    no
## 117   94           0    no
## 118   94           0    no
## 119   94           0    no
## 120   95           1   yes
## 121   95           0    no
## 122   95           0    no
## 123   95           0    no
## 124   95           0    no
## 125   96           1   yes
## 126   97           0    no
## 127  100           1   yes
## 128  104           0    no
## 129  104           0    no
## 130  105           0    no
## 131  106           0    no
## 132  107           0    no
## 133  107           0    no
## 134  107           0    no
## 135  107           0    no
## 136  107           0    no
## 137  107           0    no
## 138  108           0    no
## 139  108           0    no
## 140  108           0    no
## 141  109           1   yes
## 142  109           0    no
## 143  109           0    no
## 144  110           0    no
## 145  111           1   yes
## 146  112           0    no
## 147  112           0    no
## 148  113           0    no
## 149  113           1   yes
## 150  115           0    no
## 151  115           1   yes
## 152  117           0    no
## 153  118           0    no
## 154  119           0    no
## 155  120           0    no
## 156  120           0    no
## 157  120           0    no
## 158  120           0    no
## 159  121           0    no
## 160  121           0    no
## 161  121           0    no
## 162  121           0    no
## 163  123           0    no
## 164  126           1   yes
## 165  129           1   yes
## 166  130           1   yes
## 167  134           0    no
## 168  135           1   yes
## 169  140           0    no
## 170  145           0    no
## 171  145           0    no
## 172  146           0    no
## 173  146           0    no
## 174  146           0    no
## 175  146           0    no
## 176  146           0    no
## 177  147           0    no
## 178  147           0    no
## 179  147           0    no
## 180  147           0    no
## 181  148           0    no
## 182  150           1   yes
## 183  154           1   yes
## 184  162           1   yes
## 185  170           1   yes
## 186  171           1   yes
## 187  172           1   yes
## 188  172           1   yes
## 189  172           0    no
## 190  174           0    no
## 191  174           0    no
## 192  174           0    no
## 193  175           0    no
## 194  180           0    no
## 195  180           1   yes
## 196  180           1   yes
## 197  185           0    no
## 198  186           0    no
## 199  186           0    no
## 200  186           0    no
## 201  186           0    no
## 202  186           0    no
## 203  186           0    no
## 204  187           0    no
## 205  187           0    no
## 206  187           0    no
## 207  187           0    no
## 208  187           0    no
## 209  187           0    no
## 210  187           0    no
## 211  188           0    no
## 212  192           0    no
## 213  192           0    no
## 214  193           1   yes
## 215  194           0    no
## 216  195           0    no
## 217  196           0    no
## 218  196           1   yes
## 219  197           0    no
## 220  197           0    no
## 221  198           1   yes
## 222  200           0    no
## 223  201           0    no
## 224  201           0    no
## 225  205           0    no
## 226  205           0    no
## 227  205           0    no
## 228  206           0    no
## 229  207           0    no
## 230  207           0    no
## 231  207           1   yes
## 232  208           0    no
## 233  209           0    no
## 234  209           0    no
## 235  209           0    no
## 236  209           0    no
## 237  209           0    no
## 238  210           0    no
## 239  210           0    no
## 240  211           0    no
## 241  212           0    no
## 242  212           0    no
## 243  212           0    no
## 244  213           0    no
## 245  213           0    no
## 246  213           0    no
## 247  214           1   yes
## 248  214           0    no
## 249  214           0    no
## 250  214           0    no
## 251  214           0    no
## 252  215           0    no
## 253  215           0    no
## 254  215           0    no
## 255  215           0    no
## 256  216           0    no
## 257  220           0    no
## 258  230           0    no
## 259  230           0    no
## 260  231           0    no
## 261  233           0    no
## 262  233           0    no
## 263  235           1   yes
## 264  237           0    no
## 265  237           0    no
## 266  240           0    no
## 267  241           1   yes
## 268  244           0    no
## 269  244           0    no
## 270  244           0    no
## 271  244           0    no
## 272  244           0    no
## 273  245           0    no
## 274  245           0    no
## 275  245           0    no
## 276  245           0    no
## 277  245           0    no
## 278  246           0    no
## 279  246           0    no
## 280  246           0    no
## 281  247           0    no
## 282  250           0    no
## 283  250           0    no
## 284  250           0    no
## 285  250           0    no
## 286  250           0    no
## 287  250           0    no
## 288  250           0    no
## 289  256           0    no
## 290  256           0    no
## 291  257           0    no
## 292  258           0    no
## 293  258           0    no
## 294  270           0    no
## 295  270           0    no
## 296  271           0    no
## 297  278           0    no
## 298  280           0    no
## 299  285           0    no

Box plot

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
ggplot(data = mortality, aes(x = DEATH, y= age, fill = DEATH)) + 
  geom_boxplot() +
  scale_fill_manual(values = c("no" = "purple", "yes" = "pink")) + 
  labs(title = "Box plot of mortality dataset", y = "Age", x = "Death_Event") + 
  theme_minimal()

col_names= names(mortality)

for (col in col_names) {
  if (col == "DEATH") next

  p = ggplot(mortality, aes(x =!!sym("DEATH"), y = !!sym(col), fill = "DEATH")) +
    geom_boxplot() +
    scale_fill_manual(values = c("no" = "purple", "yes" = "pink")) + 
    labs(title = "Box plot of Mortality dataset",x = "Death", y = col ) + 
  
    theme_minimal()
  
  print(p)
}
## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## Warning: No shared levels found between `names(values)` of the manual scale and the
## data's fill values.
## No shared levels found between `names(values)` of the manual scale and the
## data's fill values.

## for all column

col_names= names(mortality)

for (col in col_names) {
  if (col == "DEATH") next

  p = ggplot(mortality, aes_string(x = "DEATH", y = col, fill = "DEATH")) +
    geom_boxplot() +
    scale_fill_manual(values = c("no" = "purple", "yes" = "pink")) + 
    labs(title = "Box plot of Mortality dataset",x = "Death", y = col ) + 
  
    theme_minimal()
  
  print(p)
}
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

Violin Plot

ggplot(data = mortality, aes(x = DEATH, y= age, fill = DEATH)) + 
  geom_violin()+ 
  scale_fill_manual(values = c("no" = "purple", "yes" = "pink")) + 
  labs(title = "Violin Plot of Mortality dataset", y = "Age", x = "Death") + 
  theme_minimal()

## for all column

col_names= names(mortality)

for (col in col_names) {
  if (col == "DEATH") next

  q = ggplot(mortality, aes_string(x = "DEATH", y = col, fill = "DEATH")) +
     geom_violin()+
    scale_fill_manual(values = c("no" = "purple", "yes" = "pink")) + 
    labs(title = "Violin Plot of Mortality dataset",x = "Death", y = col ) + 
  
    theme_minimal()
  
  print(q)
}

scale point

ggplot(data = mortality, aes(x = DEATH, y = age, color = DEATH)) + 
  geom_point() +
  scale_color_manual(values = c("no" = "purple", "yes" = "pink"))+ 

  theme_minimal()

ggplot(data = mortality, aes(x =  anaemia, y = age, color = DEATH)) + 
  geom_point() +
  scale_color_manual(values = c("no" = "purple", "yes" = "pink"))+ 

  theme_minimal()

## for all column

col_names= names(mortality)

for (col in col_names) {
  if (col == "DEATH") next

  r = ggplot(mortality, aes_string(x = col, y = "age", color = "DEATH")) +
     geom_point() +
    scale_color_manual(values = c("no" = "purple", "yes" = "pink")) + 
    labs(title = "Scale Point of Mortality dataset",y = "age", x = col ) + 
  
    theme_minimal()
  
  print(r)
}

summary(mortality)
##       age           anaemia       creatinine_phosphokinase    diabetes     
##  Min.   :40.00   Min.   :0.0000   Min.   :  23.0           Min.   :0.0000  
##  1st Qu.:51.00   1st Qu.:0.0000   1st Qu.: 116.5           1st Qu.:0.0000  
##  Median :60.00   Median :0.0000   Median : 250.0           Median :0.0000  
##  Mean   :60.83   Mean   :0.4314   Mean   : 581.8           Mean   :0.4181  
##  3rd Qu.:70.00   3rd Qu.:1.0000   3rd Qu.: 582.0           3rd Qu.:1.0000  
##  Max.   :95.00   Max.   :1.0000   Max.   :7861.0           Max.   :1.0000  
##  ejection_fraction high_blood_pressure   platelets      serum_creatinine
##  Min.   :14.00     Min.   :0.0000      Min.   : 25100   Min.   :0.500   
##  1st Qu.:30.00     1st Qu.:0.0000      1st Qu.:212500   1st Qu.:0.900   
##  Median :38.00     Median :0.0000      Median :262000   Median :1.100   
##  Mean   :38.08     Mean   :0.3512      Mean   :263358   Mean   :1.394   
##  3rd Qu.:45.00     3rd Qu.:1.0000      3rd Qu.:303500   3rd Qu.:1.400   
##  Max.   :80.00     Max.   :1.0000      Max.   :850000   Max.   :9.400   
##   serum_sodium        sex            smoking            time      
##  Min.   :113.0   Min.   :0.0000   Min.   :0.0000   Min.   :  4.0  
##  1st Qu.:134.0   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.: 73.0  
##  Median :137.0   Median :1.0000   Median :0.0000   Median :115.0  
##  Mean   :136.6   Mean   :0.6488   Mean   :0.3211   Mean   :130.3  
##  3rd Qu.:140.0   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:203.0  
##  Max.   :148.0   Max.   :1.0000   Max.   :1.0000   Max.   :285.0  
##   DEATH_EVENT        DEATH          
##  Min.   :0.0000   Length:299        
##  1st Qu.:0.0000   Class :character  
##  Median :0.0000   Mode  :character  
##  Mean   :0.3211                     
##  3rd Qu.:1.0000                     
##  Max.   :1.0000

Bar Count

ggplot(data = mortality, aes(x = DEATH, fill = DEATH) ) + 
  geom_bar() +
  scale_fill_manual(values = c("no" = "purple", "yes" = "pink")) + 
  theme_minimal()

ggplot(data = mortality, aes(x = "", fill = DEATH)) + 
  geom_bar(stat = "count") + 
  coord_polar(theta = "y") +
  scale_fill_manual(values = c("no" = "purple", "yes" = "pink")) + 
  theme_minimal()

Heat map

cor_ma = cor(mortality[ ,1:5])
cor_ma
##                                  age     anaemia creatinine_phosphokinase
## age                       1.00000000  0.08800644             -0.081583900
## anaemia                   0.08800644  1.00000000             -0.190741030
## creatinine_phosphokinase -0.08158390 -0.19074103              1.000000000
## diabetes                 -0.10101239 -0.01272905             -0.009638514
## ejection_fraction         0.06009836  0.03155697             -0.044079554
##                              diabetes ejection_fraction
## age                      -0.101012385        0.06009836
## anaemia                  -0.012729046        0.03155697
## creatinine_phosphokinase -0.009638514       -0.04407955
## diabetes                  1.000000000       -0.00485031
## ejection_fraction        -0.004850310        1.00000000
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.3.3
ggcorrplot(cor_ma)

ggcorrplot(cor_ma, type="lower",colors = c("pink" , "skyblue"))

ggcorrplot(cor_ma, type="upper",colors = c("pink" , "skyblue"))

ggcorrplot(cor_ma, type="lower", lab = TRUE, colors = c("pink" , "skyblue"))

ggcorrplot(cor_ma, type="upper", lab = TRUE, colors = c("pink" , "skyblue"))

## comparing time

ggplot(mortality, aes(x = time, y = age, color = DEATH)) + 
  geom_line() + theme_minimal()

ggplot(mortality, aes(x = time)) + 
  geom_histogram(fill = "blue", color="purple", binwidth = 0.80)

## Pairwise Plots

library(GGally)
## Warning: package 'GGally' was built under R version 4.3.3
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
ggpairs(mortality[ , 1:14], aes(color=DEATH))
## Warning in cor(x, y): the standard deviation is zero
## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero

## Warning in cor(x, y): the standard deviation is zero
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

mortality_violin =   ggplot(data = mortality, aes(x = DEATH, y=age, fill = DEATH)) + 
  geom_violin()+ 
  labs(title = "Pairwise Plots", y = "age", x = "DEATH") + 
  theme_minimal()

mortality_violin

interactive graph

library(plotly)
## Warning: package 'plotly' was built under R version 4.3.3
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
ggplotly(mortality_violin)
scatter_mortality = ggplot(data = mortality, aes(x = ejection_fraction , y=age, color = DEATH)) + 
  geom_point() +
  theme_minimal()

ggplotly(scatter_mortality)
library(ggplot2)
mortality_line = ggplot(mortality, aes(x = time, y = age, color = DEATH)) + 
 geom_line() +
  theme_minimal()

ggplotly(mortality_line)