Given that each bulb has an exponential lifetime with a mean of 1000 hours, let \(\lambda_i\) denote the rate parameter for the \(i\)-th bulb. For 100 bulbs, we have \(\lambda_i = \frac{1}{1000}\).
Then, the total rate at which the bulbs burn out is \(\sum_{i=1}^{100} \lambda_i = 100 \times \frac{1}{1000} = \frac{1}{10}\).
Now, considering the probability density function (PDF) of the minimum of exponential random variables, denoted by \(X_{\text{min}}\), it is given by \(f_{X_{\text{min}}}(x) = \lambda e^{-\lambda x}\), where \(\lambda\) is the rate parameter.
Therefore, for the first bulb to burn out, the PDF becomes \(f_{X_{\text{min}}}(x) = \frac{1}{10} e^{-\frac{1}{10} x}\).
Now, to determine the probability that a specific bulb, say bulb \(k\), is the first to burn out, we utilize the conditional probability:
\[ P(k \, | \, X_k = \text{min}(X_1, \ldots, X_{100})) = \frac{\lambda_k}{\sum_{i=1}^{100} \lambda_i} \]
Substituting the values, we get:
\[ P(k \, | \, X_k = \text{min}(X_1, \ldots, X_{100})) = \frac{\frac{1}{1000}}{\frac{1}{10}} = \frac{1}{10} \]
This implies that regardless of the specific bulb, the probability that any bulb is the first to burn out is \(\frac{1}{10}\).
Here is the r code:
bulbs=100
lambdaBulb=1/1000
sumLambda=(bulbs*lambdaBulb)
(minE = 1/sumLambda)
## [1] 10
\[ f_Z(z) = \frac{1}{2} \lambda e^{-\lambda |z|} \]
Firstly, we start with the probability density functions (PDFs) of \(X_1\) and \(X_2\), expressed as \(f(x_1) = \lambda e^{-\lambda x_1}\) and \(f(x_2) = \lambda e^{-\lambda x_2}\), respectively.
Multiplying these PDFs together, we obtain \(\lambda^2 e^{-\lambda(x_1 + x_2)}\), representing the joint density of \(X_1\) and \(X_2\).
Now, considering \(Z = X_1 - X_2\), we replace \(x_1\) with \(z + x_2\) in the joint density, resulting in \(\lambda^2 e^{-\lambda(z + 2x_2)}\). To derive the density of \(Z\) and \(X_2\), we integrate with respect to \(x_2\).
When \(z\) is negative, \(x_2 > -z\), and for positive \(z\), \(x_2\) is also positive.
For negative \(z\), the integral yields \(\lambda^2 e^{\lambda z}\), while for positive \(z\), it evaluates to \(\lambda^2 e^{-\lambda|z|}\).
The density of \(Z\) is determined as \(f_Z(z) = \frac{1}{2} \lambda e^{-\lambda|z|}\).
# Given parameters
mu <- 10
vari <- 100/3
sd <- sqrt(vari)
# (a) P(|X - 10| >= 2)
ksd_a <- 2
k_a <- ksd_a/sqrt(vari)
upper_bound_a <- 1/(k_a^2)
result_a <- pmin(upper_bound_a, 1)
# (b) P(|X - 10| >= 5)
ksd_b <- 5
k_b <- ksd_b/sqrt(vari)
upper_bound_b <- 1/(k_b^2)
result_b <- pmin(upper_bound_b, 1)
# (c) P(|X - 10| >= 9)
ksd_c <- 9
k_c <- ksd_c/sqrt(vari)
upper_bound_c <- 1/(k_c^2)
result_c <- pmin(upper_bound_c, 1)
# (d) P(|X - 10| >= 20)
ksd_d <- 20
k_d <- ksd_d/sqrt(vari)
upper_bound_d <- 1/(k_d^2)
result_d <- pmin(upper_bound_d, 1)
# Results
result_a
## [1] 1
result_b
## [1] 1
result_c
## [1] 0.4115226
result_d
## [1] 0.08333333