table4a_long <- table4a %>%
pivot_longer(cols = c('1999', '2000'),
names_to = "year",
values_to = "cases")
table4a_long %>%
pivot_wider(names_from = year,
values_from = cases)
## # A tibble: 3 × 3
## country `1999` `2000`
## <chr> <dbl> <dbl>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
table3_sep <- table3 %>%
separate(col = rate, into = c("cases", "population"))
table3_sep %>%
unite(col = "rate", c(cases,population), sep = "/")
## # A tibble: 6 × 3
## country year rate
## <chr> <dbl> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
stocks <- tibble(
year = c(2015,2015,2015,2015,2016,2016,2016),
qtr = c(1,2,3,4,2,3,4),
return = c(1.88,0.59,0.35,NA,0.92,0.17,2.66)
)
stocks %>%
pivot_wider(names_from = year, values_from = return)
## # A tibble: 4 × 3
## qtr `2015` `2016`
## <dbl> <dbl> <dbl>
## 1 1 1.88 NA
## 2 2 0.59 0.92
## 3 3 0.35 0.17
## 4 4 NA 2.66
bikes <- tibble(
bike_model = c("A","A","B","B","C"),
material = c("steel","aluminium", "steel","aluminium","steel"),
price = c(100,200,300,400,500)
)
bikes %>%
pivot_wider(names_from = bike_model, values_from = price)
## # A tibble: 2 × 4
## material A B C
## <chr> <dbl> <dbl> <dbl>
## 1 steel 100 300 500
## 2 aluminium 200 400 NA
bikes %>%
complete(bike_model, material)
## # A tibble: 6 × 3
## bike_model material price
## <chr> <chr> <dbl>
## 1 A aluminium 200
## 2 A steel 100
## 3 B aluminium 400
## 4 B steel 300
## 5 C aluminium NA
## 6 C steel 500
treatment <- tribble(
~ person, ~treatment, ~response,
"Derrick Whitmore",1,7,
NA,2,10,
NA,3,9,
"Katherine Burke",1,4
)
treatment %>%
fill(person,.direction = "up")
## # A tibble: 4 × 3
## person treatment response
## <chr> <dbl> <dbl>
## 1 Derrick Whitmore 1 7
## 2 Katherine Burke 2 10
## 3 Katherine Burke 3 9
## 4 Katherine Burke 1 4