ANOVA

PRAKTIKUM TM-2

  1. RAL ONE-WAY
read.csv("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data Praktikum 1.txt")
soal_prak1=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data Praktikum 1.txt", header=TRUE)

y_prak1=soal_prak1$Asam_Askorbat
perlakuan_prak1=soal_prak1$Varietas

summary(soal_prak1)
##  Asam_Askorbat     Varietas        
##  Min.   :5.260   Length:30         
##  1st Qu.:5.590   Class :character  
##  Median :6.275   Mode  :character  
##  Mean   :6.214                     
##  3rd Qu.:6.815                     
##  Max.   :7.120
ANOVA_prak1 <- aov(y_prak1  ~ perlakuan_prak1, data = soal_prak1)
summary(ANOVA_prak1)
##                 Df Sum Sq Mean Sq F value Pr(>F)    
## perlakuan_prak1  2  10.36   5.181   332.8 <2e-16 ***
## Residuals       27   0.42   0.016                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. RAL TWO-WAY
soal_prak2=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data Praktikum 2.txt", header=TRUE)

y_prak2=soal_prak2$Pertumbuhan_Tanaman
perlakuanA_prak2=soal_prak2$Penyiraman
perlakuanB_prak2=soal_prak2$Penyinaran_Matahari

summary(soal_prak2)
##  Pertumbuhan_Tanaman  Penyiraman        Penyinaran_Matahari
##  Min.   :3.00        Length:40          Length:40          
##  1st Qu.:4.55        Class :character   Class :character   
##  Median :5.20        Mode  :character   Mode  :character   
##  Mean   :5.16                                              
##  3rd Qu.:5.80                                              
##  Max.   :6.60
#tanpa interaksi
ANOVA_prak2 <- aov(y_prak2 ~ perlakuanA_prak2+perlakuanB_prak2, data = soal_prak2)
summary(ANOVA_prak2)
##                  Df Sum Sq Mean Sq F value   Pr(>F)    
## perlakuanA_prak2  1  0.064   0.064   0.204    0.655    
## perlakuanB_prak2  3 20.006   6.669  21.207 5.26e-08 ***
## Residuals        35 11.006   0.314                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#dengan interaksi
ANOVA_prak2_interaction <- aov(y_prak2 ~ perlakuanA_prak2*perlakuanB_prak2, data = soal_prak2)
summary(ANOVA_prak2_interaction)
##                                   Df Sum Sq Mean Sq F value  Pr(>F)    
## perlakuanA_prak2                   1  0.064   0.064   0.199   0.659    
## perlakuanB_prak2                   3 20.006   6.669  20.726 1.2e-07 ***
## perlakuanA_prak2:perlakuanB_prak2  3  0.710   0.237   0.736   0.539    
## Residuals                         32 10.296   0.322                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. RAKL
soal_prak3=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data Praktikum 3.txt", header=TRUE)

y_prak3=soal_prak3$Hardness
perlakuan_prak3=soal_prak3$Tip
blok_prak3=soal_prak3$Block

summary(soal_prak3)
##     Hardness          Tip           Block     
##  Min.   :-3.00   Min.   :1.00   Min.   :1.00  
##  1st Qu.:-1.00   1st Qu.:1.75   1st Qu.:1.75  
##  Median : 1.00   Median :2.50   Median :2.50  
##  Mean   : 1.25   Mean   :2.50   Mean   :2.50  
##  3rd Qu.: 3.25   3rd Qu.:3.25   3rd Qu.:3.25  
##  Max.   : 7.00   Max.   :4.00   Max.   :4.00
ANOVA_prak3 = aov(y_prak3 ~ perlakuan_prak3+blok_prak3, data = soal_prak3)
summary(ANOVA_prak3)
##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## perlakuan_prak3  1  11.25   11.25   3.507 0.083763 .  
## blok_prak3       1  76.05   76.05  23.709 0.000306 ***
## Residuals       13  41.70    3.21                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TUGAS TM 2

  1. RAL ONE-WAY
read.csv("D:\\UNAIR\\SEMESTER 2\\METSTAT\\soal1.txt")
Soal1=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\soal1.txt", header=TRUE, colClasses = c("numeric", "factor"))
y1=Soal1$Hasil
perlakuan=Soal1$Perlakuan
summary(Soal1)
##      Hasil          Perlakuan
##  Min.   :11   Perlakuan_1:4  
##  1st Qu.:12   Perlakuan_2:5  
##  Median :15   Perlakuan_3:6  
##  Mean   :15                  
##  3rd Qu.:18                  
##  Max.   :21
ANOVA1 <- aov(y1 ~ perlakuan, data = Soal1)
summary(ANOVA1)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## perlakuan    2     90   45.00   8.437 0.00515 **
## Residuals   12     64    5.33                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. RAL TWO-WAY
Soal2=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\soal2.txt", header=TRUE, colClasses = c("numeric", "factor", "factor"))
y2=Soal2$Gaji
Perlakuan_A=Soal2$Lokasi
Perlakuan_B=Soal2$Tipe
summary(Soal2)
##       Gaji           Lokasi       Tipe   
##  Min.   :44.00   Central:27   Type_1:27  
##  1st Qu.:56.00   East   :27   Type_2:27  
##  Median :62.00   West   :27   Type_3:27  
##  Mean   :62.62                           
##  3rd Qu.:69.00                           
##  Max.   :84.00
#ANOVA
#-----------tanpa interaksi-----------
ANOVA2 <- aov(y2 ~ Perlakuan_A + Perlakuan_B, data = Soal2)
summary(ANOVA2)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Perlakuan_A  2   2521  1260.5   47.79 3.65e-14 ***
## Perlakuan_B  2   2499  1249.7   47.38 4.37e-14 ***
## Residuals   76   2005    26.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#-----------dengan interaksi-----------
INTERACTION <- aov(y2 ~ Perlakuan_A * Perlakuan_B, data = Soal2)
summary(INTERACTION)
##                         Df Sum Sq Mean Sq F value   Pr(>F)    
## Perlakuan_A              2 2521.0  1260.5  50.645 1.85e-14 ***
## Perlakuan_B              2 2499.4  1249.7  50.212 2.22e-14 ***
## Perlakuan_A:Perlakuan_B  4  212.7    53.2   2.137    0.085 .  
## Residuals               72 1792.0    24.9                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

PRAKTIKUM TM 3

  1. LSD/RBSL
setwd("D:/UNAIR/SEMESTER 2/METSTAT/")

soal_prak1_2=read.table("m3 factorial design rakl 1.txt", header = TRUE, colClasses = c("factor","numeric","factor","factor"))
soal_prak1_2
summary(soal_prak1_2)
##  Perlakuan Pertumbuhan_Tanaman_Jagung Baris Kolom Perlakuan_Code
##  A:5       Min.   : 8.00              1:5   1:5   1:5           
##  B:5       1st Qu.:13.00              2:5   2:5   2:5           
##  C:5       Median :16.00              3:5   3:5   3:5           
##  D:5       Mean   :15.72              4:5   4:5   4:5           
##  E:5       3rd Qu.:18.00              5:5   5:5   5:5           
##            Max.   :23.00
perlakuan_prak1_2=soal_prak1_2$Perlakuan
y_prak1_2=soal_prak1_2$Pertumbuhan_Tanaman_Jagung
baris_prak1_2=soal_prak1_2$Baris
kolom_prak1_2=soal_prak1_2$Kolom

ANOVA_prak1_2 = aov(y_prak1_2 ~ perlakuan_prak1_2+baris_prak1_2+kolom_prak1_2, data = soal_prak1_2)
summary(ANOVA_prak1_2)
##                   Df Sum Sq Mean Sq F value   Pr(>F)    
## perlakuan_prak1_2  4  454.6  113.66 122.655 1.27e-09 ***
## baris_prak1_2      4    3.0    0.76   0.820   0.5367    
## kolom_prak1_2      4   14.2    3.56   3.842   0.0311 *  
## Residuals         12   11.1    0.93                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. FACTORIAL RAL
setwd("D:/UNAIR/SEMESTER 2/METSTAT/")
soal_prak2_2=read.table("m3 factorial design rakl 2.txt", header = TRUE, colClasses = c("numeric","factor","factor"))

y_prak2_2=soal_prak2_2$Daya_Tahan_Battery
jb=soal_prak2_2$Jenis_Bahan
temp=soal_prak2_2$Temperatur

ANOVA_prak2_2= aov(y_prak2_2 ~ jb+temp+jb*temp, data=soal_prak2_2)
summary(ANOVA_prak2_2)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## jb           2  10684    5342   7.911  0.00198 ** 
## temp         2  39119   19559  28.968 1.91e-07 ***
## jb:temp      4   9614    2403   3.560  0.01861 *  
## Residuals   27  18231     675                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. FACTORIAL RAKL
setwd("D:/UNAIR/SEMESTER 2/METSTAT/")
Data3 <- read.table("m3 factorial design rakl 3.txt", header = TRUE, colClasses = c("numeric","factor","factor","factor"))
Data3
summary(Data3)
##  Kekuatan_Signal  Jenis_Filter Operator Lokasi
##  Min.   : 80.00   1:12         1:6      1:8   
##  1st Qu.: 89.25   2:12         2:6      2:8   
##  Median : 94.00                3:6      3:8   
##  Mean   : 94.92                4:6            
##  3rd Qu.:100.50                               
##  Max.   :114.00
#Subset Data
y3=Data3$Kekuatan_Signal
jf=Data3$Jenis_Filter
opt=Data3$Operator
lok=Data3$Lokasi

#ANOVA Faktorial_RAKL
#Interaksi 3 faktor
ANOVA3 <- aov(y3 ~ jf+opt+lok+jf*opt+jf*lok+opt*lok+jf*opt*lok, data = Data3)
summary(ANOVA3)
##             Df Sum Sq Mean Sq
## jf           1 1066.7  1066.7
## opt          3  402.2   134.1
## lok          2  335.6   167.8
## jf:opt       3   34.3    11.4
## jf:lok       2   77.1    38.5
## opt:lok      6   99.1    16.5
## jf:opt:lok   6   32.9     5.5
#Interaksi 2 faktor
ANOVA4 <- aov(y3 ~ jf+opt+lok+jf*opt+jf*lok+opt*lok, data = Data3)
summary(ANOVA4)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## jf           1 1066.7  1066.7 194.430 8.48e-06 ***
## opt          3  402.2   134.1  24.435 0.000920 ***
## lok          2  335.6   167.8  30.585 0.000713 ***
## jf:opt       3   34.3    11.4   2.086 0.203528    
## jf:lok       2   77.1    38.5   7.025 0.026796 *  
## opt:lok      6   99.1    16.5   3.010 0.102851    
## Residuals    6   32.9     5.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1