Observations:
N | Percent | N | Percent | N | Percent | ||
---|---|---|---|---|---|---|---|
gender | f | 593 | 24.04 | 419 | 16.98 | 174 | 7.05 |
m | 1780 | 72.15 | 1170 | 47.43 | 610 | 24.73 | |
d | 11 | 0.45 | 7 | 0.28 | 4 | 0.16 | |
no | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
exam_year | no exam | 655 | 26.55 | 446 | 18.08 | 209 | 8.47 |
2015- | 992 | 40.21 | 650 | 26.35 | 342 | 13.86 | |
2010-2014 | 234 | 9.49 | 161 | 6.53 | 73 | 2.96 | |
2005-2009 | 169 | 6.85 | 118 | 4.78 | 51 | 2.07 | |
2000-2004 | 141 | 5.72 | 97 | 3.93 | 44 | 1.78 | |
1995-1999 | 90 | 3.65 | 54 | 2.19 | 36 | 1.46 | |
1990-1994 | 69 | 2.80 | 51 | 2.07 | 18 | 0.73 | |
1985-1989 | 56 | 2.27 | 39 | 1.58 | 17 | 0.69 | |
1980-1984 | 24 | 0.97 | 18 | 0.73 | 6 | 0.24 | |
-1980 | 23 | 0.93 | 15 | 0.61 | 8 | 0.32 | |
occupation | judge | 170 | 6.89 | 114 | 4.62 | 56 | 2.27 |
prosec | 88 | 3.57 | 60 | 2.43 | 28 | 1.13 | |
lawyer | 540 | 21.89 | 347 | 14.07 | 193 | 7.82 | |
in-house | 209 | 8.47 | 145 | 5.88 | 64 | 2.59 | |
admin | 188 | 7.62 | 133 | 5.39 | 55 | 2.23 | |
professor | 24 | 0.97 | 15 | 0.61 | 9 | 0.36 | |
scholar | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
doctoral candidate | 39 | 1.58 | 28 | 1.13 | 11 | 0.45 | |
trainee | 367 | 14.88 | 244 | 9.89 | 123 | 4.99 | |
student | 574 | 23.27 | 388 | 15.73 | 186 | 7.54 | |
other | 175 | 7.09 | 122 | 4.95 | 53 | 2.15 | |
field_law | private | 1103 | 44.71 | 738 | 29.91 | 365 | 14.80 |
criminal | 535 | 21.69 | 363 | 14.71 | 172 | 6.97 | |
public | 514 | 20.84 | 349 | 14.15 | 165 | 6.69 | |
none | 308 | 12.48 | 205 | 8.31 | 103 | 4.18 |
N | Percent | N | Percent | N | Percent | ||
---|---|---|---|---|---|---|---|
gender | f | 593 | 24.04 | 419 | 16.98 | 174 | 7.05 |
m | 1780 | 72.15 | 1170 | 47.43 | 610 | 24.73 | |
d | 11 | 0.45 | 7 | 0.28 | 4 | 0.16 | |
no | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
exam_year | no exam | 655 | 26.55 | 446 | 18.08 | 209 | 8.47 |
2015- | 992 | 40.21 | 650 | 26.35 | 342 | 13.86 | |
2010-2014 | 234 | 9.49 | 161 | 6.53 | 73 | 2.96 | |
2005-2009 | 169 | 6.85 | 118 | 4.78 | 51 | 2.07 | |
2000-2004 | 141 | 5.72 | 97 | 3.93 | 44 | 1.78 | |
1995-1999 | 90 | 3.65 | 54 | 2.19 | 36 | 1.46 | |
1990-1994 | 69 | 2.80 | 51 | 2.07 | 18 | 0.73 | |
1985-1989 | 56 | 2.27 | 39 | 1.58 | 17 | 0.69 | |
1980-1984 | 24 | 0.97 | 18 | 0.73 | 6 | 0.24 | |
-1980 | 23 | 0.93 | 15 | 0.61 | 8 | 0.32 | |
occupation | judge | 170 | 6.89 | 114 | 4.62 | 56 | 2.27 |
prosec | 88 | 3.57 | 60 | 2.43 | 28 | 1.13 | |
lawyer | 540 | 21.89 | 347 | 14.07 | 193 | 7.82 | |
in-house | 209 | 8.47 | 145 | 5.88 | 64 | 2.59 | |
admin | 188 | 7.62 | 133 | 5.39 | 55 | 2.23 | |
professor | 24 | 0.97 | 15 | 0.61 | 9 | 0.36 | |
scholar | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
doctoral candidate | 39 | 1.58 | 28 | 1.13 | 11 | 0.45 | |
trainee | 367 | 14.88 | 244 | 9.89 | 123 | 4.99 | |
student | 574 | 23.27 | 388 | 15.73 | 186 | 7.54 | |
other | 175 | 7.09 | 122 | 4.95 | 53 | 2.15 | |
field_law | private | 1103 | 44.71 | 738 | 29.91 | 365 | 14.80 |
criminal | 535 | 21.69 | 363 | 14.71 | 172 | 6.97 | |
public | 514 | 20.84 | 349 | 14.15 | 165 | 6.69 | |
none | 308 | 12.48 | 205 | 8.31 | 103 | 4.18 |
N | Percent | N | Percent | N | Percent | ||
---|---|---|---|---|---|---|---|
gender | f | 474 | 26.36 | 333 | 18.52 | 141 | 7.84 |
m | 1270 | 70.63 | 829 | 46.11 | 441 | 24.53 | |
d | 6 | 0.33 | 4 | 0.22 | 2 | 0.11 | |
no | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
exam_year | no exam | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
2015- | 992 | 55.17 | 650 | 36.15 | 342 | 19.02 | |
2010-2014 | 234 | 13.01 | 161 | 8.95 | 73 | 4.06 | |
2005-2009 | 169 | 9.40 | 118 | 6.56 | 51 | 2.84 | |
2000-2004 | 141 | 7.84 | 97 | 5.39 | 44 | 2.45 | |
1995-1999 | 90 | 5.01 | 54 | 3.00 | 36 | 2.00 | |
1990-1994 | 69 | 3.84 | 51 | 2.84 | 18 | 1.00 | |
1985-1989 | 56 | 3.11 | 39 | 2.17 | 17 | 0.95 | |
1980-1984 | 24 | 1.33 | 18 | 1.00 | 6 | 0.33 | |
-1980 | 23 | 1.28 | 15 | 0.83 | 8 | 0.44 | |
occupation | judge | 170 | 9.45 | 114 | 6.34 | 56 | 3.11 |
prosec | 88 | 4.89 | 60 | 3.34 | 28 | 1.56 | |
lawyer | 539 | 29.98 | 347 | 19.30 | 192 | 10.68 | |
in-house | 195 | 10.85 | 138 | 7.68 | 57 | 3.17 | |
admin | 184 | 10.23 | 130 | 7.23 | 54 | 3.00 | |
professor | 22 | 1.22 | 13 | 0.72 | 9 | 0.50 | |
scholar | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
doctoral candidate | 36 | 2.00 | 25 | 1.39 | 11 | 0.61 | |
trainee | 366 | 20.36 | 243 | 13.52 | 123 | 6.84 | |
student | 55 | 3.06 | 35 | 1.95 | 20 | 1.11 | |
other | 57 | 3.17 | 38 | 2.11 | 19 | 1.06 | |
field_law | private | 895 | 49.78 | 594 | 33.04 | 301 | 16.74 |
criminal | 397 | 22.08 | 272 | 15.13 | 125 | 6.95 | |
public | 377 | 20.97 | 253 | 14.07 | 124 | 6.90 | |
none | 127 | 7.06 | 82 | 4.56 | 45 | 2.50 |
Unless otherwise indicated, we use only observations after start of data collection where participants have passed the first state exam and have fully completed the survey.
treatment | N | Mean | SD | P0 | P25 | P50 | P75 | P100 | |
---|---|---|---|---|---|---|---|---|---|
intent | harm low | 622 | 50.20 | 28.82 | 0.00 | 26.00 | 50.00 | 74.00 | 100.00 |
harm high | 577 | 49.75 | 29.63 | 0.00 | 25.00 | 49.00 | 75.00 | 100.00 | |
benefit low | 597 | 45.98 | 32.32 | 0.00 | 17.00 | 42.00 | 74.00 | 100.00 | |
benefit high | 601 | 45.05 | 32.22 | 0.00 | 17.00 | 41.00 | 72.00 | 100.00 | |
prob low | 580 | 57.09 | 30.29 | 0.00 | 33.00 | 63.00 | 83.00 | 100.00 | |
prob high | 619 | 61.15 | 28.47 | 0.00 | 40.00 | 67.00 | 83.00 | 100.00 |
## [1] "G1 = harm low , G2 = harm high"
## Warning in wilcox.test.default(g1, g2, exact = TRUE): cannot compute exact
## p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: g1 and g2
## W = 181232, p-value = 0.7658
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "G1 = benefit low , G2 = benefit high"
## Warning in wilcox.test.default(g1, g2, exact = TRUE): cannot compute exact
## p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: g1 and g2
## W = 182284, p-value = 0.6297
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "G1 = prob low , G2 = prob high"
## Warning in wilcox.test.default(g1, g2, exact = TRUE): cannot compute exact
## p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: g1 and g2
## W = 166303, p-value = 0.02743
## alternative hypothesis: true location shift is not equal to 0
treatment | N | Mean | SD | P0 | P25 | P50 | P75 | P100 | |
---|---|---|---|---|---|---|---|---|---|
intent | harm low | 593 | 49.14 | 33.19 | 0.00 | 21.00 | 50.00 | 76.00 | 100.00 |
harm high | 595 | 48.66 | 33.27 | 0.00 | 20.00 | 46.00 | 76.00 | 100.00 | |
benefit low | 595 | 50.09 | 35.74 | 0.00 | 17.00 | 51.00 | 84.00 | 100.00 | |
benefit high | 595 | 55.75 | 35.21 | 0.00 | 24.00 | 62.00 | 87.50 | 100.00 | |
prob low/harm low | 594 | 48.85 | 32.16 | 0.00 | 22.00 | 43.00 | 75.00 | 100.00 | |
prob high/harm low | 594 | 68.40 | 27.27 | 0.00 | 53.00 | 72.50 | 92.00 | 100.00 | |
prob low/harm high | 592 | 55.86 | 31.36 | 0.00 | 33.00 | 58.00 | 83.25 | 100.00 | |
prob high/harm high | 592 | 72.02 | 28.14 | 0.00 | 58.00 | 80.50 | 97.00 | 100.00 |
## [1] "G1 = harm low , G2 = harm high"
## Warning in wilcox.test.default(g1, g2, exact = TRUE, paired = TRUE): cannot
## compute exact p-value with ties
## Warning in wilcox.test.default(g1, g2, exact = TRUE, paired = TRUE): cannot
## compute exact p-value with zeroes
##
## Wilcoxon signed rank test with continuity correction
##
## data: g1 and g2
## V = 36823, p-value = 0.3114
## alternative hypothesis: true location shift is not equal to 0
## [1] "G1 = benefit low , G2 = benefit high"
## Warning in wilcox.test.default(g1, g2, exact = TRUE, paired = TRUE): cannot
## compute exact p-value with ties
## Warning in wilcox.test.default(g1, g2, exact = TRUE, paired = TRUE): cannot
## compute exact p-value with zeroes
##
## Wilcoxon signed rank test with continuity correction
##
## data: g1 and g2
## V = 20060, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
## [1] "G1 = prob high/harm high , G2 = prob high/harm low"
## Warning in wilcox.test.default(g1, g2, exact = TRUE, paired = TRUE): cannot
## compute exact p-value with ties
## Warning in wilcox.test.default(g1, g2, exact = TRUE, paired = TRUE): cannot
## compute exact p-value with zeroes
##
## Wilcoxon signed rank test with continuity correction
##
## data: g1 and g2
## V = 70793, p-value = 6.561e-14
## alternative hypothesis: true location shift is not equal to 0
general_obj_subj | N | % |
---|---|---|
subjective | 976 | 54.3 |
objective | 796 | 44.3 |
N | Mean | SD | P10 | P25 | Median | P75 | P90 | |
---|---|---|---|---|---|---|---|---|
general_interest | 1787 | 73.23 | 20.54 | 50.00 | 53.00 | 75.00 | 91.00 | 100.00 |
general_probability | 1793 | 87.70 | 15.88 | 68.00 | 82.00 | 93.00 | 100.00 | 100.00 |
general_harm | 1789 | 52.50 | 21.75 | 25.00 | 49.00 | 50.00 | 63.00 | 84.00 |
general_negligence | 1791 | 69.21 | 22.21 | 43.00 | 54.00 | 70.00 | 85.00 | 100.00 |
general_effort | 1793 | 26.68 | 23.85 | 0.00 | 6.00 | 20.00 | 42.00 | 52.00 |
general_accustomed | 1792 | 42.26 | 22.90 | 13.00 | 27.00 | 47.00 | 51.00 | 73.00 |
subjective | objective | subjective | objective | subjective | objective | subjective | objective | |
---|---|---|---|---|---|---|---|---|
general_interest | 971 | 791 | 72.02 | 74.66 | 20.80 | 20.11 | 74.00 | 77.00 |
general_probability | 974 | 794 | 87.49 | 88.05 | 15.59 | 16.26 | 92.00 | 94.00 |
general_harm | 971 | 793 | 51.51 | 53.92 | 21.34 | 22.11 | 50.00 | 50.00 |
general_negligence | 973 | 793 | 68.01 | 70.91 | 22.07 | 22.18 | 68.00 | 73.00 |
general_effort | 973 | 795 | 26.14 | 26.98 | 24.08 | 23.21 | 19.00 | 22.00 |
general_accustomed | 972 | 795 | 41.16 | 43.33 | 22.46 | 23.25 | 44.00 | 49.00 |
##
## Call:
## lm(formula = intent ~ treatment * general_harm, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -59.33 -28.22 -1.24 26.93 62.80
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.54030 2.44785 17.379 < 2e-16 ***
## treatment.L -7.55969 3.46178 -2.184 0.02918 *
## general_harm 0.12359 0.04313 2.866 0.00424 **
## treatment.L:general_harm 0.13821 0.06099 2.266 0.02363 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33.07 on 1178 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.01126, Adjusted R-squared: 0.008739
## F-statistic: 4.471 on 3 and 1178 DF, p-value: 0.003952
##
## Call:
## lm(formula = intent ~ treatment + general_harm + occupation,
## data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.366 -28.059 -2.312 27.902 70.968
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.73388 3.92154 10.387 < 2e-16 ***
## treatment.L -0.17218 1.38718 -0.124 0.90124
## general_harm 0.14489 0.04474 3.239 0.00124 **
## occupationprosec 9.19496 5.39715 1.704 0.08872 .
## occupationlawyer 0.80999 3.54684 0.228 0.81940
## occupationin-house 6.55540 4.40619 1.488 0.13709
## occupationadmin -2.40111 4.46898 -0.537 0.59118
## occupationprofessor -17.52075 8.37337 -2.092 0.03662 *
## occupationdoctoral candidate 2.93171 7.72427 0.380 0.70436
## occupationtrainee -3.01574 3.75867 -0.802 0.42253
## occupationstudent 6.40042 6.07587 1.053 0.29238
## occupationother 0.52904 6.19403 0.085 0.93195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.97 on 1118 degrees of freedom
## (60 observations deleted due to missingness)
## Multiple R-squared: 0.02547, Adjusted R-squared: 0.01588
## F-statistic: 2.656 on 11 and 1118 DF, p-value: 0.002303
##
## Call:
## lm(formula = intent ~ treatment * general_harm, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51.504 -24.285 -0.601 24.401 50.935
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.692418 2.245654 22.128 <2e-16 ***
## treatment.L 0.886782 3.175835 0.279 0.780
## general_harm 0.005977 0.039465 0.151 0.880
## treatment.L:general_harm -0.026031 0.055812 -0.466 0.641
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.24 on 1190 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.0003314, Adjusted R-squared: -0.002189
## F-statistic: 0.1315 on 3 and 1190 DF, p-value: 0.9414
##
## Call:
## lm(formula = intent ~ treatment + general_harm + occupation,
## data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.243 -22.794 -0.926 23.617 53.140
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.051663 3.495441 13.747 <2e-16 ***
## treatment.L -0.495288 1.232839 -0.402 0.6879
## general_harm 0.005185 0.040807 0.127 0.8989
## occupationprosec 6.741414 4.696220 1.435 0.1514
## occupationlawyer -0.867285 3.182682 -0.273 0.7853
## occupationin-house 2.936102 3.724089 0.788 0.4306
## occupationadmin 6.145144 3.767495 1.631 0.1032
## occupationprofessor 6.964617 8.560717 0.814 0.4161
## occupationdoctoral candidate 5.847877 6.454934 0.906 0.3652
## occupationtrainee -0.229076 3.343332 -0.069 0.9454
## occupationstudent 13.488241 5.657858 2.384 0.0173 *
## occupationother 3.924437 5.614987 0.699 0.4847
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.14 on 1122 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.01426, Adjusted R-squared: 0.004597
## F-statistic: 1.476 on 11 and 1122 DF, p-value: 0.1346
##
## Call:
## lm(formula = intent ~ treatment * general_interest, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -58.532 -32.839 4.967 32.551 53.770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.99847 3.78560 12.415 <2e-16 ***
## treatment.L 1.31740 5.35364 0.246 0.806
## general_interest 0.08015 0.04934 1.625 0.104
## treatment.L:general_interest 0.03658 0.06977 0.524 0.600
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35.43 on 1182 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.008842, Adjusted R-squared: 0.006326
## F-statistic: 3.515 on 3 and 1182 DF, p-value: 0.01475
Is there an effect of “w/i” vs. “b/t” on the level of “intent”? That is, does a salient treatment shift the mean/intercept?
Do doctrinal views cluster?